0000000000812768
AUTHOR
Gregor Jotzu
Evidence for metastable photo-induced superconductivity in K3C60
Far and mid infrared optical pulses have been shown to induce non-equilibrium unconventional orders in complex materials, including photo-induced ferroelectricity in quantum paraelectrics, magnetic polarization in antiferromagnets and transient superconducting correlations in the normal state of cuprates and organic conductors. In the case of non-equilibrium superconductivity, femtosecond drives have generally resulted in electronic properties that disappear immediately after excitation, evidencing a state that lacks intrinsic rigidity. Here, we make use of a new optical device to drive metallic K$_3$C$_{60}$ with mid-infrared pulses of tunable duration, ranging between one picosecond and o…
Microscopic theory for the light-induced anomalous Hall effect in graphene
We employ a quantum Liouville equation with relaxation to model the recently observed anomalous Hall effect in graphene irradiated by an ultrafast pulse of circularly polarized light. In the weak-field regime, we demonstrate that the Hall effect originates from an asymmetric population of photocarriers in the Dirac bands. By contrast, in the strong-field regime, the system is driven into a non-equilibrium steady state that is well-described by topologically non-trivial Floquet-Bloch bands. Here, the anomalous Hall current originates from the combination of a population imbalance in these dressed bands together with a smaller anomalous velocity contribution arising from their Berry curvature…
Pressure tuning of light-induced superconductivity in K3C60
Optical excitation at terahertz frequencies has emerged as an effective means to manipulate complex solids dynamically. In the molecular solid K3C60, coherent excitation of intramolecular vibrations was shown to transform the high temperature metal into a non-equilibrium state with the optical conductivity of a superconductor. Here we tune this effect with hydrostatic pressure, and we find it to disappear around 0.3 GPa. Reduction with pressure underscores the similarity with the equilibrium superconducting phase of K3C60, in which a larger electronic bandwidth is detrimental for pairing. Crucially, our observation excludes alternative interpretations based on a high-mobility metallic phase…