High-resolution non-linear Raman spectroscopy in gases
The resolution in the Raman spectra of gases has been greatly improved by the development of the different methods of non-linear Raman scattering. When two laser beams, one of which has a tunable frequency, are focused in a sample, a stimulated Raman process occurs as soon as the frequency difference between the two lasers is equal to a Raman-active rovibrational or rotational transition frequency. The Raman resonance can be detected in different ways: by coherent anti-Stokes Raman scattering (CARS) or the corresponding Stokes process (CSRS), by a gain in one of the beams (stimulated Raman gain spectroscopy, SRGS) or a loss in the other (inverse Raman spectroscopy, IRS), or even by detectio…