0000000000814336

AUTHOR

Laura Martinez-ferrer

showing 2 related works from this author

Interpretability of Recurrent Neural Networks in Remote Sensing

2020

In this work we propose the use of Long Short-Term Memory (LSTM) Recurrent Neural Networks for multivariate time series of satellite data for crop yield estimation. Recurrent nets allow exploiting the temporal dimension efficiently, but interpretability is hampered by the typically overparameterized models. The focus of the study is to understand LSTM models by looking at the hidden units distribution, the impact of increasing network complexity, and the relative importance of the input covariates. We extracted time series of three variables describing the soil-vegetation status in agroe-cosystems -soil moisture, VOD and EVI- from optical and microwave satellites, as well as available in si…

2. Zero hungerMultivariate statisticsNetwork complexity010504 meteorology & atmospheric sciencesComputer science0211 other engineering and technologies02 engineering and technology15. Life on landcomputer.software_genre01 natural sciencesRecurrent neural networkDimension (vector space)Redundancy (engineering)Relevance (information retrieval)Data miningTime seriesWater contentcomputer021101 geological & geomatics engineering0105 earth and related environmental sciencesInterpretabilityIGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium
researchProduct

Crop Yield Estimation and Interpretability With Gaussian Processes

2021

This work introduces the use of Gaussian processes (GPs) for the estimation and understanding of crop development and yield using multisensor satellite observations and meteo- rological data. The proposed methodology combines synergistic information on canopy greenness, biomass, soil, and plant water content from optical and microwave sensors with the atmospheric variables typically measured at meteorological stations. A com- posite covariance is used in the GP model to account for varying scales, nonstationary, and nonlinear processes. The GP model reports noticeable gains in terms of accuracy with respect to other machine learning approaches for the estimation of corn, wheat, and soybean …

2. Zero hungerEstimation010504 meteorology & atmospheric sciencesCrop yieldProductivitat agrícola0207 environmental engineeringProcessos estocàstics02 engineering and technology15. Life on landGeotechnical Engineering and Engineering Geology01 natural sciencessymbols.namesake13. Climate actionStatisticssymbolsElectrical and Electronic Engineering020701 environmental engineeringGaussian process0105 earth and related environmental sciencesMathematicsInterpretabilityIEEE Geoscience and Remote Sensing Letters
researchProduct