0000000000814434
AUTHOR
Asep Juarna
Combinatorial isomorphism between Fibonacci classes
Abstract In 1985 Simion and Schmidt showed that the set S n (T 3) of length n permutations avoiding the set of patterns T 3={123, 132, 213} is counted by (the second order) Fibonacci numbers. They also presented a constructive bijection between the set F n–1 of length (n–1) binary strings with no two consecutive 1s and S n (T 3). In 2005, Egge and Mansour generalized the first Simion-Simion’s result and showed that S n (T p ), the set of permutations avoiding the patterns T p ={12…p, 132, 213}, is counted by the (p–1)th order Fibonacci numbers. In this paper we extend the second Simion-Schmidt’s result by giving a bijection between the set of length (n–1) binary strings with no (p–1) consec…
Some Generalizations of a Simion Schmidt Bijection
In 1985, Simion and Schmidt gave a constructive bijection φ from the set of all length (n-1) binary strings having no two consecutive 1s to the set of all length n permutations avoiding all patterns in {123,132,213}. In this paper, we generalize φ to an injective function from {0,1}n-1 to the set Sn of all length n permutations and derive from it four bijections φ : P →Q where P⊆{0,1}n-1 and Q ⊂ Sn. The domains are sets of restricted binary strings and the codomains are sets of pattern-avoiding permutations. As a particular case we retrieve the original Simion–Schmidt bijection. We also show that the bijections obtained are actually combinatorial isomorphisms, i.e. closeness-preserving bije…