0000000000814434

AUTHOR

Asep Juarna

showing 2 related works from this author

Combinatorial isomorphism between Fibonacci classes

2008

Abstract In 1985 Simion and Schmidt showed that the set S n (T 3) of length n permutations avoiding the set of patterns T 3={123, 132, 213} is counted by (the second order) Fibonacci numbers. They also presented a constructive bijection between the set F n–1 of length (n–1) binary strings with no two consecutive 1s and S n (T 3). In 2005, Egge and Mansour generalized the first Simion-Simion’s result and showed that S n (T p ), the set of permutations avoiding the patterns T p ={12…p, 132, 213}, is counted by the (p–1)th order Fibonacci numbers. In this paper we extend the second Simion-Schmidt’s result by giving a bijection between the set of length (n–1) binary strings with no (p–1) consec…

Discrete mathematicsAlgebra and Number TheoryFibonacci numberApplied MathematicsHamiltonian pathCombinatoricsSet (abstract data type)Gray codesymbols.namesakeBijectionsymbolsOrder (group theory)IsomorphismBinary stringsAnalysisMathematicsJournal of Discrete Mathematical Sciences and Cryptography
researchProduct

Some Generalizations of a Simion Schmidt Bijection

2007

In 1985, Simion and Schmidt gave a constructive bijection φ from the set of all length (n-1) binary strings having no two consecutive 1s to the set of all length n permutations avoiding all patterns in {123,132,213}. In this paper, we generalize φ to an injective function from {0,1}n-1 to the set Sn of all length n permutations and derive from it four bijections φ : P →Q where P⊆{0,1}n-1 and Q ⊂ Sn. The domains are sets of restricted binary strings and the codomains are sets of pattern-avoiding permutations. As a particular case we retrieve the original Simion–Schmidt bijection. We also show that the bijections obtained are actually combinatorial isomorphisms, i.e. closeness-preserving bije…

Set (abstract data type)Discrete mathematicsGray codeCombinatoricsMathematics::CombinatoricsGeneral Computer ScienceCodomainBijectionIsomorphismBijection injection and surjectionConstructiveInjective functionMathematicsThe Computer Journal
researchProduct