0000000000814517

AUTHOR

Bruno Franco

Self-broadening coefficients and improved line intensities for the ν7 band of ethylene near 10.5μm, and impact on ethylene retrievals from Jungfraujoch solar spectra

Relying on high-resolution Fourier transform infrared (FTIR) spectra, the present work involved extensive measurements of individual line intensities and self-broadening coefficients for the ν7 band of 12C2H4. The measured self-broadening coefficients exhibit a dependence on both J and Ka. Compared to the corresponding information available in the latest edition of the HITRAN spectroscopic database, the measured line intensities were found to be higher by about 10% for high J lines in the P branch and lower by about 5% for high J lines of the R branch, varying between these two limits roughly linearly with the line positions. The impact of the presently measured line intensities on retrieva…

research product

Simulation of organics in the atmosphere: evaluation of EMACv2.54 with the Mainz Organic Mechanism (MOM) coupled to the ORACLE (v1.0) submodel

Abstract. An updated and expanded representation of organics in the chemistry general circulation model EMAC (ECHAM5/MESSy for Atmospheric Chemistry) has been evaluated. First, the comprehensive Mainz Organic Mechanism (MOM) in the submodel MECCA (Module Efficiently Calculating the Chemistry of the Atmosphere) was activated with explicit degradation of organic species up to five carbon atoms and a simplified mechanism for larger molecules. Second, the ORACLE submodel (version 1.0) considers now condensation on aerosols for all organics in the mechanism. Parameterizations for aerosol yields are used only for the lumped species that are not included in the explicit mechanism. The simultaneous…

research product