First tests of the applicability of gamma-ray imaging for background discrimination in time-of-flight neutron capture measurements
In this work we explore for the first time the applicability of using $\gamma$-ray imaging in neutron capture measurements to identify and suppress spatially localized background. For this aim, a pinhole gamma camera is assembled, tested and characterized in terms of energy and spatial performance. It consists of a monolithic CeBr$_3$ scintillating crystal coupled to a position-sensitive photomultiplier and readout through an integrated circuit AMIC2GR. The pinhole collimator is a massive carven block of lead. A series of dedicated measurements with calibrated sources and with a neutron beam incident on a $^{197}$Au sample have been carried out at n_TOF, achieving an enhancement of a factor…