0000000000815801
AUTHOR
Javier Soriano
Optical implementability of the two-dimensional Quantum Walk
We propose an optical cavity implementation of the two-dimensional coined quantum walk on the line. The implementation makes use of only classical resources, and is tunable in the sense that a large number of different unitary transformations can be implemented by tuning some parameters of the device.
Quantum walk with a time-dependent coin
We introduce quantum walks with a time-dependent coin, and show how they include, as a particular case, the generalized quantum walk recently studied by Wojcik et al. {[}Phys. Rev. Lett. \textbf{93}, 180601(2004){]} which exhibits interesting dynamical localization and quasiperiodic dynamics. Our proposal allows for a much easier implementation of this particular rich dynamics than the original one. Moreover, it allows for an additional control on the walk, which can be used to compensate for phases appearing due to external interactions. To illustrate its feasibility, we discuss an example using an optical cavity. We also derive an approximated solution in the continuous limit (long--wavel…