0000000000816396

AUTHOR

F. G. Eich

Octopus, a computational framework for exploring light-driven phenomena and quantum dynamics in extended and finite systems

Over the last few years, extraordinary advances in experimental and theoretical tools have allowed us to monitor and control matter at short time and atomic scales with a high degree of precision. An appealing and challenging route toward engineering materials with tailored properties is to find ways to design or selectively manipulate materials, especially at the quantum level. To this end, having a state-of-the-art ab initio computer simulation tool that enables a reliable and accurate simulation of light-induced changes in the physical and chemical properties of complex systems is of utmost importance. The first principles real-space-based Octopus project was born with that idea in mind,…

research product

Validity of power functionals for a homogeneous electron gas in reduced-density-matrix-functional theory

Physically valid and numerically efficient approximations for the exchange and correlation energy are critical for reduced density-matrix functional theory to become a widely used method in electronic structure calculations. Here we examine the physical limits of power functionals of the form $f(n,n')=(n n')^\alpha$ for the scaling function in the exchange-correlation energy. To this end we obtain numerically the minimizing momentum distributions for the three- and two-dimensional homogeneous electron gas, respectively. In particular, we examine the limiting values for the power $\alpha$ to yield physically sound solutions that satisfy the Lieb-Oxford lower bound for the exchange-correlatio…

research product