0000000000818421

AUTHOR

Hartmut Kayser

Candidate target mechanisms of the growth inhibitor cyromazine: Studies of phenylalanine hydroxylase, puparial amino acids, and dihydrofolate reductase in dipteran insects

Cyromazine, an insect growth regulator, affects larval and pupal cuticles in dipterans and some other insects. The mode of action of this aminotriazine is not known yet, though it has been shown not to inhibit the synthesis of chitin and cuticular proteins. Cyromazine may, however, act on some step(s) of sclerotization of the cuticle. In the present study, we have analyzed the key enzyme for the production of sclerotization agents, phenylalanine hydroxylase (PAH), using the enzyme from Drosophila, a cyromazine-sensitive insect. PAH was studied in vitro with cyromazine and three biologically less active derivatives at concentrations ranging from 1 μM to 1 mM. None of the compounds did signif…

research product

cDNA sequences of two arylphorin subunits of an insect biliprotein: phylogenetic differences and gene duplications during evolution of hexamerins-implications for hexamer formation

Arylphorins represent a conserved class of hexameric ∼500 kDa insect hemolymph glycoproteins, rich in aromatic amino acids, which are produced in large quantities at the larval stage as reserves for metamorphosis and egg development. The recently isolated arylphorin from the moth Cerura vinula is unique in being complexed to a novel farnesylated bilin. Protein sequencing suggested the presence of two different ∼85 kDa subunits. Here, we report the complete coding sequences of two cDNAs encoding two arylphorins subunits with 67% identity and calculated physicochemical characteristics in agreement with the isolated holoprotein. Our phylogenetic analyses of the hexamerins revealed monophyletic…

research product