0000000000818506

AUTHOR

Mikko Pääkkönen

Uncertainty on w from large-scale structure

We find that if we live at the center of an inhomogeneity with total density contrast of roughly 0.1, dark energy is not a cosmological constant at 95% confidence level. Observational constraints on the equation of state of dark energy, w, depend strongly on the local matter density around the observer. We model the local inhomogeneity with an exact spherically symmetric solution which features a pressureless matter component and a dark-energy fluid with constant equation of state and negligible sound speed, that reaches a homogeneous solution at finite radius. We fit this model to observations of the local expansion rate, distant supernovae and the cosmic microwave background. We conclude …

research product

Exact spherically-symmetric inhomogeneous model withnperfect fluids

We present the exact equations governing the dynamics of a spherically-symmetric inhomogeneous model with n decoupled and non-comoving perfect fluids. Thanks to the use of physically meaningful quantities we write the set of 3+2n equations in a concise and transparent way. The n perfect fluids can have general equations of state, thus making the model extremely flexible to study a large variety of cosmological and astrophysical problems. As applications we consider a model sourced by two non-comoving dust components and a cosmological constant, and a model featuring dust and a dark energy component with negligible speed of sound.

research product

Spherically symmetric inhomogeneous cosmological models

research product

Observational constraints on the LLTB model

We directly compare the concordance LCDM model to the inhomogeneous matter-only alternative represented by LTB void models. To achieve a "democratic" confrontation we explore LLTB models with non-vanishing cosmological constant and perform a global likelihood analysis in the parameter space of cosmological constant and void radius. In our analysis we carefully consider SNe, Hubble constant, CMB and BAO measurements, marginalizing over spectral index, age of the universe and background curvature. We find that the LCDM model is not the only possibility compatible with the observations, and that a matter-only void model is a viable alternative to the concordance model only if the BAO constrain…

research product