0000000000820086
AUTHOR
C. Malyshev
Finite-temperature correlations in the trapped Bose-Einstein gas
There is a large literature (cf. eg. [1, 2]) which, under conditions of translational invariance, has used functional integral methods to calculate, ab initio, the equilibrium finite temperature 2-point correlation functions (Green ’s functions) \[\left\langle {\hat \psi (r,\tau ){{\hat \psi }^\dag }(r',\tau ')} \right\rangle \] \(G\left( {r,r'} \right) \equiv \left\langle {\psi \left( {r,\tau } \right){{{\hat{\psi }}}^{\dag }}\left( {r',\tau '} \right)} \right\rangle \) for a Bose gas in each of d=3, d=2, d=1 space dimensions: (…) means thermal average and τ, τ′ are ‘thermal times’ for which 0<τ,<τ′β and β−1=k B T, T the temperature. These functional integral methods [1, 2] solve the many-…
Finite-temperature correlations in the one-dimensional trapped and untrapped Bose gases
We calculate the dynamic single-particle and many-particle correlation functions at non-zero temperature in one-dimensional trapped repulsive Bose gases. The decay for increasing distance between the points of these correlation functions is governed by a scaling exponent that has a universal expression in terms of observed quantities. This expression is valid in the weak-interaction Gross-Pitaevskii as well as in the strong-interaction Girardeau-Tonks limit, but the observed quantities involved depend on the interaction strength. The confining trap introduces a weak center-of-mass dependence in the scaling exponent. We also conjecture results for the density-density correlation function.