0000000000820087

AUTHOR

A.a. Rybakov

Mixed-Valence Magnetic Molecular Cell for Quantum Cellular Automata: Prospects of Designing Multifunctional Devices through Exploration of Double Exchange

In this article, we propose to use multielectron square-planar mixed-valence (MV) molecules as molecular cells for quantum cellular automata (QCA) devices. As distinguished from previous proposals ...

research product

Toward multifunctional molecular cells for quantum cellular automata: exploitation of interconnected charge and spin degrees of freedom

We discuss the possibility of using mixed-valence (MV) dimers comprising paramagnetic metal ions as molecular cells for quantum cellular automata (QCA). Thus, we propose to combine the underlying idea behind the functionality of QCA of using the charge distributions to encode binary information with the additional functional options provided by the spin degrees of freedom. The multifunctional ('smart') cell is supposed to consist of multielectron MV d(n)-d(n+1)-type (1 ≤ n ≤ 8) dimers of transition metal ions as building blocks for composing bi-dimeric square planar cells for QCA. The theoretical model of such a cell involves the double exchange (DE), Heisenberg-Dirac-Van Vleck (HDVV) excha…

research product

Exploration of the double exchange in quantum cellular automata: proposal for a new class of cells

In this communication we propose to considerably extend the class of systems suitable as cells for quantum cellular automata by including magnetic quantum dots and molecular mixed valence dimers exhibiting double exchange. As distinguished from the previous works we propose to use not only charges as the information carriers but also spin degrees of freedom. In this context we focus on the two key points: (1) properties of the magnetic cell as reservoir for charges carrying binary information, and (2) identification of conditions under which spin degrees of freedom can be employed.

research product