0000000000820205
AUTHOR
Eric Berberich
Exacus: Efficient and Exact Algorithms for Curves and Surfaces
We present the first release of the Exacus C++ libraries. We aim for systematic support of non-linear geometry in software libraries. Our goals are efficiency, correctness, completeness, clarity of the design, modularity, flexibility, and ease of use. We present the generic design and structure of the libraries, which currently compute arrangements of curves and curve segments of low algebraic degree, and boolean operations on polygons bounded by such segments.
An exact, complete and efficient implementation for computing planar maps of quadric intersection curves
We present the first exact, complete and efficient implementation that computes for a given set P=p1,...,pn of quadric surfaces the planar map induced by all intersection curves p1∩ pi, 2 ≤ i ≤ n, running on the surface of p1. The vertices in this graph are the singular and x-extreme points of the curves as well as all intersection points of pairs of curves. Two vertices are connected by an edge if the underlying points are connected by a branch of one of the curves. Our work is based on and extends ideas developed in [20] and [9].Our implementation is complete in the sense that it can handle all kind of inputs including all degenerate ones where intersection curves have singularities or pa…