0000000000820246

AUTHOR

Wieslaw Dziobiak

showing 2 related works from this author

Deduction theorems within RM and its extensions

1999

AbstractIn [13], M. Tokarz specified some infinite family of consequence operations among all ones associated with the relevant logic RM or with the extensions of RM and proved that each of them admits a deduction theorem scheme. In this paper, we show that the family is complete in a sense that if C is a consequence operation with CRM ≤ C and C admits a deduction theorem scheme, then C is equal to a consequence operation specified in [13]. In algebraic terms, this means that the only quasivarieties of Sugihara algebras with the relative congruence extension property are the quasivarieties corresponding, via the algebraization process, to the consequence operations specified in [13].

PhilosophyDeduction theoremPure mathematicsProperty (philosophy)Congruence (geometry)LogicScheme (mathematics)Relevance logicExtension (predicate logic)Algebraic numberMathematicsJournal of Symbolic Logic
researchProduct

The parameterized local deduction theorem for quasivarieties of algebras and its application

1996

Let τ be an algebraic type. To each classK of τ-algebras a consequence relation ⊧ K defined on the set of τ-equations is assigned. Some weak forms of the deduction theorem for ⊧ K and their algebraic counterparts are investigated. The (relative) congruence extension property (CEP) and its variants are discussed.CEP is shown to be equivalent to a parameter-free form of the deduction theorem for the consequence ⊧ K .CEP has a strong impact on the structure ofK: for many quasivarietiesK,CEP implies thatK is actually a variety. This phenomenon is thoroughly discussed in Section 5. We also discuss first-order definability of relative principal congruences. This property is equivalent to the fact…

Discrete mathematicsPure mathematicsDeduction theoremAlgebra and Number TheoryFundamental theoremQuasivarietyNo-go theoremStructure (category theory)Congruence relationVariety (universal algebra)Finite setMathematicsAlgebra Universalis
researchProduct