0000000000820338

AUTHOR

Christoffer Johans

Distribution potential in electrified microemulsions with potential determining salts

Abstract The electrical polarization of lamellar and water-in-oil microemulsions composed of the aqueous solution of a potential determining salt (PDS), an organic solvent and a nonionic surfactant has been studied. The distribution of the PDS ions across the interface between two immiscible electrolyte solutions (ITIES) generates an electrical potential difference which can be used to control charge transfer processes. In macroscopic ITIES, this distribution potential is independent of the PDS concentration and can be determined from the electroneutrality condition far from the interface. In microemulsions, on the contrary, the distribution potential is smaller in magnitude and depends on …

research product

Channel flow at an immobilised liquid|liquid interface

A novel rectangular channel flow electrochemical cell for the study of liquid | liquid interfaces is presented. The organic phase is immobilised by the use of a gelling agent, while the aqueous phase flows past the interface. This creates an asymmetric setup that allows us to establish diagnostic criteria to determine, for example, the direction of the ion transfer. The effects of varying flow rate and sweep rate have been considered both theoretically and experimentally. By comparison with two-dimensional simulations, it is demonstrated that a simple one-dimensional theory can be used to describe the cyclic voltammetry response of the channel flow cell.

research product

Potential determining salts in microemulsions: interfacial distribution and effect on the phase behavior.

In this work we consider potential determining salts, also referred to as phase transfer agents for a future objective of electrochemistry at the oil-water interface in microemulsions. We have studied these salts, composed of a hydrophilic and a hydrophobic ion, in microemulsion stabilized by nonionic surfactants with an oligo ethylene oxide headgroup. NMR measurements show that the salts preferentially dissociate across the surfactant interface between the oil and water domains, and hence create a potential drop across the surfactant film, and back to back diffuse double layers in the oil and water phases. These observations are also supported by Poisson-Boltzmann calculations. This adsorp…

research product