0000000000822156

AUTHOR

Susanne Metzger

Adsorption Transition of a Polymer Chain at a Weakly Attractive Surface: Monte Carlo Simulation of Off-Lattice Models

A bead-spring model of a polymer chain with one end attached to a wall is studied by Monte Carlo simulations for chain lengths 16 ≤ N ≤ 256. Two types of adsorption potentials, 9-3 and 10-4 Lennard-Jones (LJ) potentials, between the effective monomers and the wall are assumed. For both cases the adsorption transition where the chain changes its asymptotic statistical properties from a three-dimensional to a two-dimensional configuration is located using a scaling analysis. It is shown that the crossover exponent φ = 0.50 ± 0.02 is the same for both LJ potentials. This value is compatible with recent theoretical predictions and simulation results for lattice models with short-range wall pote…

research product

Static properties of end-tethered polymers in good solution: A comparison between different models

We present a comparison between results, obtained from different simulation models, for the static properties of end-tethered polymer layers in good solvent. Our analysis includes data from two previous studies--the bond fluctuation model of Wittmer et al. [J. Chem. Phys. 101, 4379 (1994)] and the off-lattice bead-spring model of Grest and Murat [Macromolecules 26, 3108 (1993)]. Additionally, we explore the properties of a similar off-lattice model simulated close to the Theta temperature. We show that the data for the bond fluctuation and the Grest-Murat model can be analyzed in terms of scaling theory because chains are swollen inside the Pincus blob. In the vicinity of the Theta point th…

research product