0000000000824283

AUTHOR

Ruben Agadzanyan

showing 3 related works from this author

Size of Quantum Finite State Transducers

2007

Sizes of quantum and deterministic finite state transducers are compared in the case when both quantum and deterministic finite state transducers exist. The difference in size may be exponential.

Discrete mathematicsTransducerComputer Science::SoundMathematical analysisComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)Finite stateQuantumComputer Science::Formal Languages and Automata TheoryMathematicsExponential function
researchProduct

Finite State Transducers with Intuition

2010

Finite automata that take advice have been studied from the point of view of what is the amount of advice needed to recognize nonregular languages. It turns out that there can be at least two different types of advice. In this paper we concentrate on cases when the given advice contains zero information about the input word and the language to be recognized. Nonetheless some nonregular languages can be recognized in this way. The help-word is merely a sufficiently long word with nearly maximum Kolmogorov complexity. Moreover, any sufficiently long word with nearly maximum Kolmogorov complexity can serve as a help-word. Finite automata with such help can recognize languages not recognizable …

Discrete mathematicsTheoretical computer scienceNested wordKolmogorov complexityComputer scienceComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)Nondeterministic algorithmTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESDeterministic finite automatonKolmogorov structure functionProbabilistic automatonQuantum finite automataNondeterministic finite automatonComputer Science::Formal Languages and Automata Theory
researchProduct

Quantum Computation With Devices Whose Contents Are Never Read

2010

In classical computation, a "write-only memory" (WOM) is little more than an oxymoron, and the addition of WOM to a (deterministic or probabilistic) classical computer brings no advantage. We prove that quantum computers that are augmented with WOM can solve problems that neither a classical computer with WOM nor a quantum computer without WOM can solve, when all other resource bounds are equal. We focus on realtime quantum finite automata, and examine the increase in their power effected by the addition of WOMs with different access modes and capacities. Some problems that are unsolvable by two-way probabilistic Turing machines using sublogarithmic amounts of read/write memory are shown to…

FOS: Computer and information sciencesQuantum sortQuantum PhysicsTheoretical computer scienceQuantum Turing machineComputer scienceFormal Languages and Automata Theory (cs.FL)ComputationQuantum simulatorFOS: Physical sciencesComputer Science - Formal Languages and Automata TheoryComputational Complexity (cs.CC)Computer Science - Computational ComplexityQuantum algorithmQuantum informationComputational problemQuantum Physics (quant-ph)Quantum computer
researchProduct