0000000000824650

AUTHOR

Osamah Thaher

showing 2 related works from this author

The Charcot Marie Tooth Disease Mutation R94Q in MFN2 Decreases ATP Production but Increases Mitochondrial Respiration under Conditions of Mild Oxida…

2019

Charcot-Marie tooth disease is a hereditary polyneuropathy caused by mutations in Mitofusin-2 (MFN2), a GTPase in the outer mitochondrial membrane involved in the regulation of mitochondrial fusion and bioenergetics. Autosomal-dominant inheritance of a R94Q mutation in MFN2 causes the axonal subtype 2A2A which is characterized by early onset and progressive atrophy of distal muscles caused by motoneuronal degeneration. Here, we studied mitochondrial shape, respiration, cytosolic, and mitochondrial ATP content as well as mitochondrial quality control in MFN2-deficient fibroblasts stably expressing wildtype or R94Q MFN2. Under normal culture conditions, R94Q cells had slightly more fragmented…

cell_developmental_biologyBioenergeticsmitochondrial fusionChemistryMitophagymedicineMFN2PINK1Mitochondrionmedicine.disease_causePyruvate kinaseOxidative stressCell biology
researchProduct

The thiol switch C684 in Mitofusin-2 mediates redox-induced alterations of mitochondrial shape and respiration

2017

Mitofusin-2 (MFN2) is a GTPase in the outer mitochondrial membrane involved in the regulation of mitochondrial fusion and bioenergetics. MFN2 also plays a role in mitochondrial fusion induced by changes in the intracellular redox state. Adding oxidized glutathione (GSSG), the core cellular stress indicator, to mitochondrial preparations stimulates mitochondrial fusion by inducing disulphide bond-mediated oligomer formation of MFN2 and its homolog MFN1 which involve cysteine 684 (C684) of MFN2. Mitochondrial hyperfusion represents an adaptive stress response that confers transient protection by increasing mitochondrial ATP production but how this depends on the thiol switch C684 in MFN2 has …

Mice Knockout0301 basic medicineCell RespirationMFN2Cell BiologyOxidative phosphorylationMitochondrionBiologyMitochondrial apoptosis-induced channelGTP PhosphohydrolasesMitochondriaCell biologyMice03 medical and health sciencesCellular and Molecular NeuroscienceMitofusin-2030104 developmental biologymitochondrial fusionAnimalsMFN1Sulfhydryl CompoundsATP–ADP translocaseCell ShapeOxidation-ReductionCells CulturedNeurochemistry International
researchProduct