A combined experimental and theoretical study of the unimolecular elimination kinetics of 2-alkoxypropionic acids in the gas phase
Abstract The reaction mechanism associated with the decomposition of three 2-alkoxypropionic acids (2-methoxy-, 2-ethoxy- and 2-isopropoxypropionic acid) in gas phase to form acetaldehyde, carbon monoxide, and the corresponding alcohol has been analyzed by a combination of experimental and theoretical studies. The kinetics of these systems were determined in a static system over the temperature and pressure range of 301.2–370.7°C and 61–190 Torr, respectively, in seasoned vessel, with the free-radical inhibitor cyclohexene. The experimental data show that these decompositions are homogeneous, unimolecular and follow a first-order rate law. A detailed characterization, at MP2/6-31G** computa…