Asymmetric Tunneling Conductance and the non-Fermi Liquid Behavior of Strongly Correlated Fermi Systems
Tunneling differential conductivity (or resistivity) is a sensitive tool to experimentally test the nonFermi liquid behavior of strongly correlated Fermi systems. In the case of common metals the Landau– Fermi liquid theory demonstrates that the differential conductivity is a symmetric function of bias voltage V . This is because the particle-hole symmetry is conserved in the Landau–Fermi liquid state. When a strongly correlated Fermi system turns out to be near the topological fermion condensation quantum phase transition, its Landau–Fermi liquid properties disappear so that the particle-hole symmetry breaks making the differential tunneling conductivity to be asymmetric function of V . Th…