0000000000825588

AUTHOR

Teru Hideshima

showing 3 related works from this author

Bortezomib Induces Anti–Multiple Myeloma Immune Response Mediated by cGAS/STING Pathway Activation

2021

Abstract The proteasome inhibitor bortezomib induces apoptosis in multiple myeloma cells and has transformed patient outcome. Using in vitro as well as in vivo immunodeficient and immunocompetent murine multiple myeloma models, we here show that bortezomib also triggers immunogenic cell death (ICD), characterized by exposure of calreticulin on dying multiple myeloma cells, phagocytosis of tumor cells by dendritic cells, and induction of multiple myeloma–specific immunity. We identify a bortezomib-triggered specific ICD gene signature associated with better outcome in two independent cohorts of patients with multiple myeloma. Importantly, bortezomib stimulates multiple myeloma cell immunogen…

medicine.medical_treatmentIFNBortezomibMiceImmune systemimmune system diseaseshemic and lymphatic diseasesimmunogenic cell deathmedicineAnimalsHumansbortezomib myelomaMultiple myelomaBortezomibbusiness.industryImmunityMembrane ProteinsGeneral MedicineImmunotherapymedicine.diseaseNucleotidyltransferasesStingApoptosisCancer researchProteasome inhibitorImmunogenic cell deathMultiple MyelomabusinessSignal TransductionSTINGmedicine.drugBlood Cancer Discovery
researchProduct

Gabarap Loss Mediates Immune Escape in High Risk Multiple Myeloma

2021

Abstract Immune therapies including CAR T cells and bispecific T cell engagers are demonstrating remarkable efficacy in relapsed refractory myeloma (MM). In this context, we have recently shown that proteasome inhibitor bortezomib (BTZ) results in immunogenic cell death (ICD) and in a viral mimicry state in MM cells, allowing for immune recognition of tumor cells. Induction of a robust anti-MM immune response after BTZ was confirmed both in vitro and in vivo: treatment of 5TGM1 MM cells with BTZ induced tumor regression associated with memory immune response, confirmed by ELISPOT of mouse splenocytes. We have confirmed the obligate role of calreticulin (CALR) exposure in phagocytosis and th…

GABARAPImmunologyImmune escapemedicineCancer researchCell BiologyHematologyBiologymedicine.diseaseBiochemistryMultiple myelomaBlood
researchProduct

A 13 mer LNA-i-miR-221 Inhibitor Restores Drug Sensitivity in Melphalan-Refractory Multiple Myeloma Cells.

2016

Abstract Purpose: The onset of drug resistance is a major cause of treatment failure in multiple myeloma. Although increasing evidence is defining the role of miRNAs in mediating drug resistance, their potential activity as drug-sensitizing agents has not yet been investigated in multiple myeloma. Experimental Design: Here we studied the potential utility of miR-221/222 inhibition in sensitizing refractory multiple myeloma cells to melphalan. Results: miR-221/222 expression inversely correlated with melphalan sensitivity of multiple myeloma cells. Inhibition of miR-221/222 overcame melphalan resistance and triggered apoptosis of multiple myeloma cells in vitro, in the presence or absence of…

0301 basic medicineMelphalanCancer ResearchStromal cellApoptosisDrug resistancePharmacologyArticle03 medical and health scienceschemistry.chemical_compoundMice0302 clinical medicinemyeloma microRNA mir-221 melphalanimmune system diseasesIn vivohemic and lymphatic diseasesCell Line TumorProto-Oncogene ProteinsmedicineAnimalsHumansMelphalanMultiple myelomaNOD miceCell Proliferationbusiness.industryCancermedicine.diseaseXenograft Model Antitumor AssaysGene Expression Regulation NeoplasticMicroRNAs030104 developmental biologyOncologychemistryDrug Resistance Neoplasm030220 oncology & carcinogenesisGrowth inhibitionMultidrug Resistance-Associated ProteinsbusinessApoptosis Regulatory ProteinsMultiple Myelomamedicine.drugClinical cancer research : an official journal of the American Association for Cancer Research
researchProduct