0000000000828312

AUTHOR

Marcello Maggiolini

A Biocompatible Aspartic-Decorated Metal–Organic Framework with Tubular Motif Degradable under Physiological Conditions

Achieving a precise control of the final structure of metal–organic frameworks (MOFs) is necessary to obtain desired physical properties. Here, we describe how the use of a metalloligand design strategy and a judicious choice of ligands inspired from nature is a versatile approach to succeed in this challenging task. We report a new porous chiral MOF, with the formula Ca5II{CuII10[(S,S)-aspartamox]5}·160H2O (1), constructed from Cu2+ and Ca2+ ions and aspartic acid-decorated ligands, where biometal Cu2+ ions are bridged by the carboxylate groups of aspartic acid moieties. The structure of MOF 1 reveals an infinite network of basket-like cages, built by 10 crystallographically distinct Cu(II…

research product

Differential expression of estrogen receptors (ER?/ER?) in testis of mature and immature pigs

High affinity estrogen receptors (ERs) mediate estrogen action in male reproductive tissues. The objective of the present study was the immunolocalization of estrogen receptor alpha and estrogen receptor beta in immature and mature testes of pig, a species in which the role of estrogens on gonadal function is scarcely known. Testes from 3 and 18 month-old pigs were investigated. Immunohistochemistry was performed on paraffin embedded-tissues using both mouse anti-human monoclonal IgG ERalpha and IgG ERbeta 1 isoform. Western blot analysis demonstrated antibody specificity. ERalpha staining was not observed in immature testes, but it was detected in spermatogonia, spermatocytes and in the mo…

research product

Crystallographic snapshots of host–guest interactions in drugs@metal–organic frameworks: towards mimicking molecular recognition processes

We report a novel metal–organic framework (MOF) featuring functional pores decorated with hydroxyl groups derived from the natural amino acid L-serine, which is able to establish specific interactions of different natures, strengths and directionalities with organic molecules of technological interest, i.e. ascorbic acid, pyridoxine, bupropion and 17-β-estradiol, based on their different sizes and chemical natures. The ability of 1 to distinctly organize guest molecules within its channels, through the concomitant effect of different directing supramolecular host–guest interactions, enables gaining unique insights, by means of single-crystal X-ray crystallography, into the host–guest intera…

research product

CCDC 1823995: Experimental Crystal Structure Determination

Related Article: Marta Mon, Rosaria Bruno, Jesús Ferrando-Soria, Lucia Bartella, Leonardo Di Donna, Marianna Talia, Rosamaria Lappano, Marcello Maggiolini, Donatella Armentano, Emilio Pardo|2018|Materials Horizons|5|683|doi:10.1039/C8MH00302E

research product

CCDC 1823991: Experimental Crystal Structure Determination

Related Article: Marta Mon, Rosaria Bruno, Jesús Ferrando-Soria, Lucia Bartella, Leonardo Di Donna, Marianna Talia, Rosamaria Lappano, Marcello Maggiolini, Donatella Armentano, Emilio Pardo|2018|Materials Horizons|5|683|doi:10.1039/C8MH00302E

research product

CCDC 1823993: Experimental Crystal Structure Determination

Related Article: Marta Mon, Rosaria Bruno, Jesús Ferrando-Soria, Lucia Bartella, Leonardo Di Donna, Marianna Talia, Rosamaria Lappano, Marcello Maggiolini, Donatella Armentano, Emilio Pardo|2018|Materials Horizons|5|683|doi:10.1039/C8MH00302E

research product

CCDC 1823992: Experimental Crystal Structure Determination

Related Article: Marta Mon, Rosaria Bruno, Jesús Ferrando-Soria, Lucia Bartella, Leonardo Di Donna, Marianna Talia, Rosamaria Lappano, Marcello Maggiolini, Donatella Armentano, Emilio Pardo|2018|Materials Horizons|5|683|doi:10.1039/C8MH00302E

research product

CCDC 2075709: Experimental Crystal Structure Determination

Related Article: Marta Mon, Rosaria Bruno, Rosamaria Lappano, Marcello Maggiolini, Leonardo Di Donna, Jesus Ferrando Soria, Donatella Armentano, Emilio Pardo|2021|Inorg.Chem.|60|14221|doi:10.1021/acs.inorgchem.1c01701

research product

CCDC 1823994: Experimental Crystal Structure Determination

Related Article: Marta Mon, Rosaria Bruno, Jesús Ferrando-Soria, Lucia Bartella, Leonardo Di Donna, Marianna Talia, Rosamaria Lappano, Marcello Maggiolini, Donatella Armentano, Emilio Pardo|2018|Materials Horizons|5|683|doi:10.1039/C8MH00302E

research product