0000000000828564

AUTHOR

Javier Poyatos-garcía

showing 2 related works from this author

Musashi-2 contributes to myotonic dystrophy muscle dysfunction by promoting excessive autophagy through miR-7 biogenesis repression

2021

Skeletal muscle symptoms strongly contribute to mortality of myotonic dystrophy type 1 (DM1) patients. DM1 is a neuromuscular genetic disease caused by CTG repeat expansions that, upon transcription, sequester the Muscleblind-like family of proteins and dysregulate alternative splicing of hundreds of genes. However, mis-splicing does not satisfactorily explain muscle atrophy and wasting, and several other contributing factors have been suggested, including hyperactivated autophagy leading to excessive catabolism. MicroRNA ( miR ) -7 has been demonstrated to be necessary and sufficient to repress the autophagy pathway in cell models of the disease, but the origin of its low levels in DM1 was…

autophagyMSI2 antisense oligonucleotides autophagy miR-7 muscle atrophy muscle dysfunction myotonic dystrophy myotubesRM1-950BiologyMyotonic dystrophyMSI2chemistry.chemical_compoundDrug DiscoverymedicineMyocyteGene silencingMBNL1muscle dysfunctionmyotonic dystrophyMyogenesisAutophagymiR-7Skeletal musclemedicine.diseaseMuscle atrophyCell biologymedicine.anatomical_structurechemistryMolecular MedicineTherapeutics. Pharmacologyantisense oligonucleotidesmedicine.symptomMolecular Therapy - Nucleic Acids
researchProduct

Preclinical characterization of antagomiR-218 as a potential treatment for myotonic dystrophy

2021

Myotonic dystrophy type 1 (DM1) is a rare neuromuscular disease caused by expansion of unstable CTG repeats in a non-coding region of the DMPK gene. CUG expansions in mutant DMPK transcripts sequester MBNL1 proteins in ribonuclear foci. Depletion of this protein is a primary contributor to disease symptoms such as muscle weakness and atrophy and myotonia, yet upregulation of endogenous MBNL1 levels may compensate for this sequestration. Having previously demonstrated that antisense oligonucleotides against miR-218 boost MBNL1 expression and rescue phenotypes in disease models, here we provide preclinical characterization of an antagomiR-218 molecule using the HSALR mouse model and patient-d…

antisense oligonucleotidetissue distributionRM1-950BiologyMyotonic dystrophyTranscriptomechemistry.chemical_compoundalternative splicingtranscriptomicsAtrophyDrug DiscoverymicroRNAmedicineMBNL1AntagomirCTG repeat expansionstherapeutic gene modulationCTG repeat expansions MBNL1 protein alternative splicing antisense oligonucleotide microRNAs myotonic dystrophy therapeutic gene modulation tissue distribution transcriptomicsmyotonic dystrophyMyogenesisMyotoniamedicine.diseasemicroRNAschemistryCancer researchMolecular MedicineOriginal ArticleTherapeutics. PharmacologyMBNL1 protein
researchProduct