0000000000845102

AUTHOR

S. Libertino

showing 2 related works from this author

SiPM as miniaturised optical biosensor for DNA-microarray applications

2015

A miniaturized optical biosensor for low-level fluorescence emitted by DNA strands labelled with CY5 is showed. Aim of this work is to demonstrate that a Si-based photodetector, having a low noise and a high sensitivity, can replace traditional detection systems in DNA-microarray applications. The photodetector used is a photomultiplier (SiPM), with 25 pixels. It exhibits a higher sensitivity than commercial optical readers and we experimentally found a detection limit for spotted dried samples of ∼1 nM. We measured the fluorescence signal in different operating conditions (angle of analysis, fluorophores concentrations, solution volumes and support). Once fixed the angle of analysis, for s…

Detection limitAnalytePhotomultiplierMaterials scienceoptical biosensorbusiness.industrySiPMDNA microarrayPhotodetectorLinearityDNA-microarraySignalSettore ING-INF/01 - ElettronicaElectronic Optical and Magnetic MaterialsSilicon photomultiplierOpticslcsh:TA1-2040DNA microarray; Fluorophore detection; Optical Biosensor; SiPMSignal ProcessingElectrical and Electronic Engineeringbusinesslcsh:Engineering (General). Civil engineering (General)Sensitivity (electronics)Fluorophore detectionBiotechnologySensing and Bio-Sensing Research
researchProduct

Continuous Wave fNIRS with Silicon Photomultiplier

2015

This work is focused on the development of a Continuous Wave (CW) NIRS integrated system with multi-wavelength LED sources between 700 and 950 nm and a Silicon Photomultiplier detector (SiPM) developed by STMicroelectronics. The Signal Noise Rate (SNR), measured placing the LEDs and an SiPM in a direct contact with the surface of a plastic phantom mimicking a real human head, results higher than the calculated minimum, required to detect small variation in the HbO2 and HHb concentration, till a source detector separation (SDS) of 6 cm.

fnirs sipm near infrared spectroscopySettore ING-INF/01 - Elettronica
researchProduct