0000000000845204
AUTHOR
Anne D. Jungblut
Pole-to-Pole Connections : Similarities between Arctic and Antarctic Microbiomes and Their Vulnerability to Environmental Change
The global biogeography of microorganisms remains poorly resolved, which limits the current understanding of microbial resilience toward environmental changes. Using high-throughput 16S rRNA gene amplicon sequencing, we characterized the microbial diversity of terrestrial and lacustrine biofilms from the Arctic, Antarctic and temperate regions. Our analyses suggest that bacterial community compositions at the poles are more similar to each other than they are to geographically closer temperate habitats, with 32% of all operational taxonomic units (OTUs) co-occurring in both polar regions. While specific microbial taxa were confined to distinct regions, representing potentially endemic popul…
Compartmentalization of gypsum and halite associated with cyanobacteria in saline soil crusts
The interface between biological and geochemical components in surface crust of a saline soil was investigated using X-Ray Diffraction (XRD), and variable pressure scanning electron microscopy (SEM) in combination with Energy Dispersive X-ray Spectrometry (EDS). Mineral compounds such as halite and gypsum were identified crystallized around filaments of cyanobacteria. A total of 92 genera were identified from the bacterial community based on 16S gene pyrosequencing analysis. The occurrence of the gypsum crystals, their shapes and compartmentalization suggested that they separated NaCl from the immediate microenvironment of the cyanobacteria, and that some cyanobacteria and communities of su…
Pole-to-Pole Connections: Similarities between Arctic and Antarctic Microbiomes and Their Vulnerability to Environmental Change
The global biogeography of microorganisms remains poorly resolved, which limits the current understanding of microbial resilience toward environmental changes. Using high-throughput 16S rRNA gene amplicon sequencing, we characterized the microbial diversity of terrestrial and lacustrine biofilms from the Arctic, Antarctic and temperate regions. Our analyses suggest that bacterial community compositions at the poles are more similar to each other than they are to geographically closer temperate habitats, with 32% of all operational taxonomic units (OTUs) co-occurring in both polar regions. While specific microbial taxa were confined to distinct regions, representing potentially endemic popul…