Efficient spatial designs using Hausdorff distances and Bayesian optimization
An iterative Bayesian optimisation technique is presented to find spatial designs of data that carry much information. We use the decision theoretic notion of value of information as the design criterion. Gaussian process surrogate models enable fast calculations of expected improvement for a large number of designs, while the full-scale value of information evaluations are only done for the most promising designs. The Hausdorff distance is used to model the similarity between designs in the surrogate Gaussian process covariance representation, and this allows the suggested algorithm to learn across different designs. We study properties of the Bayesian optimisation design algorithm in a sy…