0000000000845477

AUTHOR

Esa Ollila

showing 6 related works from this author

Sign and Rank Covariance Matrices: Statistical Properties and Application to Principal Components Analysis

2002

In this paper, the estimation of covariance matrices based on multivariate sign and rank vectors is discussed. Equivariance and robustness properties of the sign and rank covariance matrices are described. We show their use for the principal components analysis (PCA) problem. Limiting efficiencies of the estimation procedures for PCA are compared.

Covariance matrixbusiness.industrySparse PCAPattern recognitionCovarianceKernel principal component analysisCorrespondence analysisScatter matrixPrincipal component analysisApplied mathematicsArtificial intelligencebusinessCanonical correlationMathematics
researchProduct

Estimates of Regression Coefficients Based on the Sign Covariance Matrix

2002

SummaryA new estimator of the regression parameters is introduced in a multivariate multiple-regression model in which both the vector of explanatory variables and the vector of response variables are assumed to be random. The affine equivariant estimate matrix is constructed using the sign covariance matrix (SCM) where the sign concept is based on Oja's criterion function. The influence function and asymptotic theory are developed to consider robustness and limiting efficiencies of the SCM regression estimate. The estimate is shown to be consistent with a limiting multinormal distribution. The influence function, as a function of the length of the contamination vector, is shown to be linea…

Statistics and ProbabilityEstimation of covariance matricesCovariance matrixLinear regressionStatisticsRegression analysisMultivariate normal distributionStatistics Probability and UncertaintyCovarianceAsymptotic theory (statistics)Least squaresMathematicsJournal of the Royal Statistical Society Series B: Statistical Methodology
researchProduct

Sign and rank covariance matrices with applications to multivariate analysis

2002

asymptotic effciencyaffine equivariance multivariate analysisrobustnessmultivariate sign and rank
researchProduct

The affine equivariant sign covariance matrix: asymptotic behavior and efficiencies

2003

We consider the affine equivariant sign covariance matrix (SCM) introduced by Visuri et al. (J. Statist. Plann. Inference 91 (2000) 557). The population SCM is shown to be proportional to the inverse of the regular covariance matrix. The eigenvectors and standardized eigenvalues of the covariance, matrix can thus be derived from the SCM. We also construct an estimate of the covariance and correlation matrix based on the SCM. The influence functions and limiting distributions of the SCM and its eigenvectors and eigenvalues are found. Limiting efficiencies are given in multivariate normal and t-distribution cases. The estimates are highly efficient in the multivariate normal case and perform …

Statistics and ProbabilityCovariance functionaffine equivarianceinfluence functionMultivariate normal distributionrobustnessComputer Science::Human-Computer InteractionEfficiencyestimatorsEstimation of covariance matricesScatter matrixStatisticsAffine equivarianceApplied mathematicsCMA-ESMultivariate signCovariance and correlation matricesRobustnessmultivariate medianMathematicsprincipal componentsInfluence functionNumerical AnalysisMultivariate medianCovariance matrixcovariance and correlation matricesdiscriminant-analysisCovarianceComputer Science::Otherdispersion matricesefficiencyLaw of total covariancemultivariate locationtestsStatistics Probability and Uncertaintyeigenvectors and eigenvaluesEigenvectors and eigenvaluesmultivariate signJournal of Multivariate Analysis
researchProduct

Influence functions and efficiencies of the canonical correlation and vector estimates based on scatter and shape matrices

2006

In this paper, the influence functions and limiting distributions of the canonical correlations and coefficients based on affine equivariant scatter matrices are developed for elliptically symmetric distributions. General formulas for limiting variances and covariances of the canonical correlations and canonical vectors based on scatter matrices are obtained. Also the use of the so-called shape matrices in canonical analysis is investigated. The scatter and shape matrices based on the affine equivariant Sign Covariance Matrix as well as the Tyler's shape matrix serve as examples. Their finite sample and limiting efficiencies are compared to those of the Minimum Covariance Determinant estima…

Statistics and ProbabilityNumerical AnalysisSign covariance matrixKanoniset korrelaatiot ja vektoritCovariance matrixMathematical analysisTyler's estimateShape matrixCanonical vectorsCovarianceCanonical correlationsCanonical analysisMatrix (mathematics)Canonical variablesCalculusSymmetric matrixEquivariant mapAffine transformationStatistics Probability and UncertaintyCanonical correlationMathematicsJournal of Multivariate Analysis
researchProduct

Affine equivariant multivariate rank methods

2003

The classical multivariate statistical methods (MANOVA, principal component analysis, multivariate multiple regression, canonical correlation, factor analysis, etc.) assume that the data come from a multivariate normal distribution and the derivations are based on the sample covariance matrix. The conventional sample covariance matrix and consequently the standard multivariate techniques based on it are, however, highly sensitive to outlying observations. In the paper a new, more robust and highly efficient, approach based on an affine equivariant rank covariance matrix is proposed and outlined. Affine equivariant multivariate rank concept is based on the multivariate Oja (Statist. Probab. …

Statistics and ProbabilityPure mathematicsApplied MathematicsMatrix t-distributionMultivariate normal distributionNormal-Wishart distributionCombinatoricsEstimation of covariance matricesScatter matrixStatistics::MethodologyMatrix normal distributionMultivariate t-distributionStatistics Probability and UncertaintyMathematicsMultivariate stable distributionJournal of Statistical Planning and Inference
researchProduct