0000000000845958
AUTHOR
Alberto Vassallo
In vivo evaluation of the interaction between the Escherichia coli IGP synthase subunits using the Bacterial Two-Hybrid system
ABSTRACT Histidine biosynthesis is one of the most characterized metabolic routes for its antiquity and its central role in cellular metabolism; indeed, it represents a cross-road between nitrogen metabolism and de novo synthesis of purines. This interconnection is due to the activity of imidazole glycerol phosphate synthase, a heterodimeric enzyme constituted by the products of two his genes, hisH and hisF, encoding a glutamine amidotransferase and a cyclase, respectively. Despite their interaction was suggested by several in vitro experiments, their in vivo complex formation has not been demonstrated. On the contrary, the analysis of the entire Escherichia coli interactome performed using…
Streptomyces coelicolor Vesicles: Many Molecules To Be Delivered
ABSTRACT Streptomyces coelicolor is a model organism for the study of Streptomyces, a genus of Gram-positive bacteria that undergoes a complex life cycle and produces a broad repertoire of bioactive metabolites and extracellular enzymes. This study investigated the production and characterization of membrane vesicles (MVs) in liquid cultures of S. coelicolor M145 from a structural and biochemical point of view; this was achieved by combining microscopic, physical and -omics analyses. Two main populations of MVs, with different sizes and cargos, were isolated and purified. S. coelicolor MV cargo was determined to be complex, containing different kinds of proteins and metabolites. In particul…
Reactivation of aerobic granular sludge for the treatment of industrial shipboard slop wastewater: Effects of long-term storage on granules structure, biofilm activity and microbial community
Abstract This work reports on reactivation of aerobic granular sludge (AGS) for the treatment of industrial recalcitrant wastewater (slop wastewater) characterized by high salinity and hydrocarbons. AGS were reactivated in two reactors, R1 and R2, to treat industrial slop wastewater after a long-term storage for 12-months at 4 °C. In R1, salt-adapted mature aerobic granules were previously subjected to a step-wise increase of hydrocarbons, whereas in R2 aerobic granules were previously cultivated in presence of salinity and hydrocarbons. After a short-term reactivation period, the slop dosage caused a simultaneous decrease of granules dimensions and proteins/polysaccharides (PN/PS) ratio do…
The small protein TrpM is involved in Streptomyces coelicolor differentiation
La small protein TrpM è coinvolta nel differenziamento morfo-fisiologico di Streptomyces coelicolor
Unravelling the DNA sequences carried by Streptomyces coelicolor membrane vesicles
AbstractMembrane vesicles (MVs) are spherical particles with nanoscale dimensions and characterized by the presence of diverse cargos, such as nucleic acids, proteins, lipids, and cellular metabolites. Many examples of (micro)organisms producing MVs are reported in literature. Among them, bacterial MVs are of particular interest because they are now considered as the fourth mechanism of horizontal gene transfer. Streptomyces bacteria are well-known for their ecological roles and ability to synthesize bioactive compounds, with Streptomyces coelicolor being the model organism. It was previously demonstrated that it can produce distinct populations of MVs characterized by different protein and…
Endophytic Bacteria and Essential Oil from Origanum vulgare ssp. vulgare Share Some VOCs with an Antibacterial Activity
Medicinal aromatic plants’ essential oils (EOs) are mixtures of volatile compounds showing antimicrobial activity, which could be exploited to face the emerging problem of multi-drug resistance. Their chemical composition can depend on the interactions between the plant and its endophytic microbiota, which is known to synthesize volatile organic compounds (VOCs). However, it is still not clear whether those volatile metabolites can contribute to the composition of the aroma profile of plants’ EOs. The aims of this study were to characterize medicinal plant O. vulgare ssp. vulgare bacterial endophyte VOCs, evaluating their ability to antagonize the growth of opportunistic human pathogens bel…
The Streptomyces coelicolor Small ORF trpM Stimulates Growth and Morphological Development and Exerts Opposite Effects on Actinorhodin and Calcium-Dependent Antibiotic Production
In actinomycetes, antibiotic production is often associated with a morpho-physiological differentiation program that is regulated by complex molecular and metabolic networks. Many aspects of these regulatory circuits have been already elucidated and many others still deserve further investigations. In this regard, the possible role of many small open reading frames (smORFs) in actinomycete morpho-physiological differentiation is still elusive. In Streptomyces coelicolor, inactivation of the smORF trpM (SCO2038) – whose product modulates L-tryptophan biosynthesis – impairs production of antibiotics and morphological differentiation. Indeed, it was demonstrated that TrpM is able to interact w…
Genomic Analysis of Endophytic Bacillus-Related Strains Isolated from the Medicinal Plant Origanum vulgare L. Revealed the Presence of Metabolic Pathways Involved in the Biosynthesis of Bioactive Compounds
Multidrug-resistant pathogens represent a serious threat to human health. The inefficacy of traditional antibiotic drugs could be surmounted through the exploitation of natural bioactive compounds of which medicinal plants are a great reservoir. The finding that bacteria living inside plant tissues, (i.e., the endophytic bacterial microbiome) can influence the synthesis of the aforementioned compounds leads to the necessity of unraveling the mechanisms involved in the determination of this symbiotic relationship. Here, we report the genome sequence of four endophytic bacterial strains isolated from the medicinal plant Origanum vulgare L. and able to antagonize the growth of opportunistic pa…
Novel Sources of Biodiversity and Biomolecules from Bacteria Isolated from a High Middle Ages Soil Sample in Palermo (Sicily, Italy)
: The urban plan of Palermo (Sicily, Italy) has evolved throughout Punic, Roman, Byzantine, Arab, and Norman ages until it stabilized within the borders that correspond to the current historic center. During the 2012 to 2013 excavation campaign, new remains of the Arab settlement, directly implanted above the structures of the Roman age, were found. The materials investigated in this study derived from the so-called Survey No 3, which consists of a rock cavity of subcylindrical shape covered with calcarenite blocks: it was probably used to dispose of garbage during the Arabic age and its content, derived from daily activities, included grape seeds, scales and bones of fish, small animal bon…