0000000000846106
AUTHOR
Olivier Lopez
Rapid migration of CO2-rich micro-fluids in calcite matrices
International audience; The transport of supercritical fluids is a determining factor for several geological processes and fundamental in predicting natural resource accumulation and distribution. Calcite, ubiquitous in most geological environments, may contain supercritical CO2 trapped under the form of fluid inclusions that may move through grain boundaries affecting the rock physical properties. However, despite macroscopic evidence for this process, until recent it was not possible to characterize this process at the nano-scale due to the difficulty of such observations. In this study, we report nanometer-scale observations on calcite crystal surfaces and demonstrate that stress with ab…
Escape of Supercritical-CO2 Fluids Trapped in Calcite Nano-metric Pores
Flow of supercritical CO2-bearing fluids through a rock is a fundamental phenomenon which acts upon a great many geological processes ranging from seismic activity to formation of ore deposits. Atomic Force Microscopy scanning experiments allowed us to infer movement of supercritical CO2-bearing fluids through calcite crystals and relate it to natural decrepitation of nanoscale fluid inclusions. Calculated velocities exceed the rate of diffusion predicated via current vacancy models by several orders of magnitude implying that CO2-rich fluid movement through micro and nano-pore space may presently be greatly underestimated.