0000000000846493
AUTHOR
Mika Raento
Evaluating Classifiers for Mobile-Masquerader Detection
As a result of the impersonation of a user of a mobile terminal, sensitive information kept locally or accessible over the network can be abused. The means of masquerader detection are therefore needed to detect the cases of impersonation. In this paper, the problem of mobile-masquerader detection is considered as a problem of classifying the user behaviour as originating from the legitimate user or someone else. Different behavioural characteristics are analysed by designated one-class classifiers whose classifications are combined. The paper focuses on selecting the classifiers for mobile-masquerader detection. The selection process is conducted in two phases. First, the classification ac…
Estimating Accuracy of Mobile-Masquerader Detection Using Worst-Case and Best-Case Scenario
In order to resist an unauthorized use of the resources accessible through mobile terminals, masquerader detection means can be employed. In this paper, the problem of mobile-masquerader detection is approached as a classification problem, and the detection is performed by an ensemble of one-class classifiers. Each classifier compares a measure describing user behavior or environment with the profile accumulating the information about past behavior and environment. The accuracy of classification is empirically estimated by experimenting with a dataset describing the behavior and environment of two groups of mobile users, where the users within groups are affiliated with each other. It is as…