0000000000846506

AUTHOR

Yevgeniya A. Mironova

showing 3 related works from this author

Author response: Oligodendrocytes control potassium accumulation in white matter and seizure susceptibility

2018

White mattermedicine.medical_specialtySeizure susceptibilitymedicine.anatomical_structureEndocrinologychemistrybusiness.industryPotassiumInternal medicineMedicinechemistry.chemical_elementbusiness
researchProduct

Oligodendrocytes Support Neuronal Glutamatergic Transmission via Expression of Glutamine Synthetase.

2019

Summary: Glutamate has been implicated in a wide range of brain pathologies and is thought to be metabolized via the astrocyte-specific enzyme glutamine synthetase (GS). We show here that oligodendrocytes, the myelinating glia of the central nervous system, also express high levels of GS in caudal regions like the midbrain and the spinal cord. Selective removal of oligodendrocyte GS in mice led to reduced brain glutamate and glutamine levels and impaired glutamatergic synaptic transmission without disrupting myelination. Furthermore, animals lacking oligodendrocyte GS displayed deficits in cocaine-induced locomotor sensitization, a behavior that is dependent on glutamatergic signaling in th…

0301 basic medicineGlutamineCentral nervous systemNeurotransmissionBiologyGeneral Biochemistry Genetics and Molecular BiologyArticleMidbrain03 medical and health sciencesGlutamatergic0302 clinical medicineGlutamate-Ammonia LigaseGlutamine synthetasemedicineAnimalslcsh:QH301-705.5Glutamate receptorBrainOligodendrocyteCell biologyGlutamineOligodendroglia030104 developmental biologymedicine.anatomical_structurenervous systemlcsh:Biology (General)030217 neurology & neurosurgerySignal TransductionCell reports
researchProduct

Oligodendrocytes control potassium accumulation in white matter and seizure susceptibility

2018

Oligodendrocytes Control Potassium Accumulation in White Matter and Seizure Susceptibility.Larson VA, Mironova Y, Vanderpool KG, Waisman A, Rash JE, Agarwal A, Bergles DE. Elife. 2018 Mar 29;7. pii: e34829. doi: 10.7554/eLife.34829.The inwardly rectifying K+ channel Kir4.1 is broadly expressed by central nervous system glia and deficits in Kir4.1 lead to seizures and myelin vacuolization. However, the role of oligodendrocyte Kir4.1 channels in controlling myelination and K+ clearance in white matter has not been defined. Here, we show that selective deletion of Kir4.1 from oligodendrocyte progenitors or mature oligodendrocytes did not impair their development or disrupt the structure of mye…

0301 basic medicineKir4.1QH301-705.5seizureScienceMice TransgenicGeneral Biochemistry Genetics and Molecular BiologyWhite matterMice03 medical and health sciencesEpilepsyMyelin0302 clinical medicineSeizuresmedicineExtracellularAnimalsHomeostasisBiology (General)Potassium Channels Inwardly RectifyingProgenitor cellMyelin SheathMice KnockoutGeneral Immunology and MicrobiologyChemistryGeneral NeuroscienceQRGeneral Medicinemedicine.diseaseWhite MatterCurrent Literature in Basic ScienceOligodendrocyteCell biologymyelinOligodendroglia030104 developmental biologymedicine.anatomical_structureVacuolizationPotassiumepilepsyMedicineoligodendrocyteGene Deletion030217 neurology & neurosurgeryHomeostasiseLife
researchProduct