0000000000846685

AUTHOR

F. Kwabia Tchana

High-resolution spectroscopy of difference and combination bands of SF6 to elucidate the ν3 + ν1 − ν1 and ν3 + ν2 − ν2 hot band structures in the ν3 region

The strong infrared absorption in the ν3 S–F stretching region of sulphur hexafluoride (SF6) near 948 cm−1 makes it a powerful greenhouse gas. Although its present concentration in the atmosphere is very low, it is increasing rapidly, due to industrial pollution. The ground state population of this heavy species is only 32% at room temperature and thus many hot bands are present. Consequently, a reliable remote-sensing spectroscopic detection and monitoring of this species require an accurate modelling of these hot bands. We used two experimental set-ups at the SOLEIL French synchrotron facility to record some difference and combination bands of SF6: (1) a new cryogenic multiple pass cell w…

research product

Resolving the forbidden band of SF6

Sulfur hexafluoride is an important molecule for modeling thermophysical and polarizability properties. It is also a potent greenhouse gas of anthropogenic origin, whose concentration in the atmosphere, although very low is increasing rapidly; its global warming power is mostly conferred by its strong infrared absorption in the ν3 S-F stretching region near 948 cm(-1). This heavy species, however, features many hot bands at room temperature (at which only 31% of the molecules lie in the ground vibrational state), especially those originating from the lowest, v6 = 1 vibrational state. Unfortunately, the ν6 band itself (near 347 cm(-1)), in the first approximation, is both infrared- and Raman…

research product