0000000000846995

AUTHOR

Giacomo Bellandi

showing 3 related works from this author

Toward a New Plant-Wide Experimental and Modeling Approach for Reduction of Greenhouse Gas Emission from Wastewater Treatment Plants

2019

Mechanisms causing greenhouse gas (GHG) emission in wastewater treatment plants are of great interest among researchers, encouraging the development of new methods for wastewater management. Wastewater treatment plants (WWTPs) emit three major greenhouse gases during the treatment processes: CO2, CH4, and N2O. Additional amounts of CO2 and CH4 are produced during energy consumption, which can be considered an indirect source of GHGs. Recently, several efforts have been undertaken to assess GHGs from WWTPs, with particular attention paid to the N2O assessment due to its high warming potential (300 times stronger than CO2). This study proposes an integrated model platform for WWTP simulation,…

Environmental EngineeringSettore ICAR/03 - Ingegneria Sanitaria-AmbientaleWaste management0208 environmental biotechnology02 engineering and technologyModelling020801 environmental engineeringReduction (complexity)Energy consumptionWastewaterGreenhouse gasEnvironmental ChemistryEnvironmental scienceGreenhouse gas (GHG) emissionSewage treatmentWastewater treatment plants (WWTPs)Decision support systemGeneral Environmental ScienceCivil and Structural Engineering
researchProduct

A novel comprehensive procedure for estimating greenhouse gas emissions from water resource recovery facilities

2017

The emissions of the major greenhouse gases (GHGs), i.e. carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) from water resource recovery facilities (WRRFs) are of increasing concern in the water industry. In order to produce useful and comparable information for monitoring, assessing, and reporting GHG emissions from WRRFs, there is a need for a generally accepted methodology for their quantification. This paper aims at proposing the first protocol for monitoring and accounting for GHG emissions from WRRFs, taking into account both direct and indirect internal emissions and focusing the attention on plant sections known to be primarily responsible for GHG emissions (i.e. oxidation…

010504 meteorology & atmospheric sciences0208 environmental biotechnologyNitrous Oxide02 engineering and technologyWastewater01 natural sciencesMethaneCarbon footprint; Methane; Nitrous oxide; Off-gas; Wastewater; Energychemistry.chemical_compoundBiogasOff-ga0105 earth and related environmental sciencesResource recoveryCarbon FootprintEnergy recoveryEnergyWaste managementSettore ICAR/03 - Ingegneria Sanitaria-AmbientaleEnvironmental engineering020801 environmental engineeringAnaerobic digestionchemistryGreenhouse gasCarbon footprintEnvironmental scienceAerationMethane
researchProduct

A new plant wide modelling approach for the reduction of greenhouse Gas emission from wastewater treatment plants

2017

Recent studies about greenhouse gas (GHG) emissions show that sewer collection systems and wastewater treatment plants (WWTPs) are anthropogenic GHG potential sources. Therefore, they contribute to the climate change and air pollution. This increasing interest towards climate change has led to the development of new tools for WWTP design and management. This paper presents the first results of a research project aiming at setting-up an innovative mathematical model platform for the design and management of WWTPs. More specifically, the study presents the project’s strategy aimed at setting-up a plant-wide mathematical model which can be used as a tool for reducing/controlling GHG from WWTP.…

GHG emissionWastewater treatment plant0208 environmental biotechnologyAir pollutionClimate change02 engineering and technologyActivated sludge model010501 environmental sciencesmedicine.disease_causeMembrane bioreactor01 natural sciencesReduction (complexity)medicinemathematical modelling hydrolysis kinetic0105 earth and related environmental sciencesGHG emissions; Mathematical modelling; Wastewater treatment plantsGHG emissions Mathematical modelling Wastewater treatment plantsWaste managementMathematical modellingSettore ICAR/03 - Ingegneria Sanitaria-AmbientaleEnvironmental engineeringEnergy consumptionwastewater treatment plants020801 environmental engineeringEnergy consumptionGreenhouse gasEnvironmental scienceSewage treatment
researchProduct