Diffeomorphism classes of Calabi-Yau varieties
In this article we investigate diffeomorphism classes of Calabi-Yau threefolds. In particular, we focus on those embedded in toric Fano manifolds. Along the way, we give various examples and conclude with a curious remark regarding mirror symmetry.
Deformations of Calabi-Yau manifolds in Fano toric varieties
In this article, we investigate deformations of a Calabi-Yau manifold $Z$ in a toric variety $F$, possibly not smooth. In particular, we prove that the forgetful morphism from the Hilbert functor $H^F_Z$ of infinitesimal deformations of $Z$ in $F$ to the functor of infinitesimal deformations of $Z$ is smooth. This implies the smoothness of $H^F_Z $ at the corresponding point in the Hilbert scheme. Moreover, we give some examples and include some computations on the Hodge numbers of Calabi-Yau manifolds in Fano toric varieties.