0000000000848726

AUTHOR

P. Hubert

showing 3 related works from this author

Final results on $${}^\mathbf{82 }{\hbox {Se}}$$ 82Se double beta decay to the ground state of $${}^\mathbf{82 }{\hbox {Kr}}$$ 82Kr from the NEMO-3 e…

2018

Using data from the NEMO-3 experiment, we have measured the two-neutrino double beta decay ($$2\nu \beta \beta $$ 2νββ ) half-life of $$^{82}$$ 82 Se as $$T_{\smash {1/2}}^{2\nu } \!=\! \left[ 9.39 \pm 0.17\left( \text{ stat }\right) \pm 0.58\left( \text{ syst }\right) \right] \times 10^{19}$$ T1/22ν=9.39±0.17stat±0.58syst×1019 y under the single-state dominance hypothesis for this nuclear transition. The corresponding nuclear matrix element is $$\left| M^{2\nu }\right| = 0.0498 \pm 0.0016$$ M2ν=0.0498±0.0016 . In addition, a search for neutrinoless double beta decay ($$0\nu \beta \beta $$ 0νββ ) using 0.93 kg of $$^{82}$$ 82 Se observed for a total of 5.25 y has been conducted and no evide…

European Physical Journal
researchProduct

Detailed studies of $$^{100}$$ 100 Mo two-neutrino double beta decay in NEMO-3

2019

The full data set of the NEMO-3 experiment has been used to measure the half-life of the two-neutrino double beta decay of $$^{100}$$ 100 Mo to the ground state of $$^{100}$$ 100 Ru, $$T_{1/2} = \left[ 6.81 \pm 0.01\,\left( \text{ stat }\right) ^{+0.38}_{-0.40}\,\left( \text{ syst }\right) \right] \times 10^{18}$$ T1/2=6.81±0.01stat-0.40+0.38syst×1018 year. The two-electron energy sum, single electron energy spectra and distribution of the angle between the electrons are presented with an unprecedented statistics of $$5\times 10^5$$ 5×105 events and a signal-to-background ratio of $$\sim $$ ∼ 80. Clear evidence for the Single State Dominance model is found for this nuclear transition. Limit…

European Physical Journal
researchProduct

Modeling of 137Cs migration in soils using an 80-year soil archive: role of fertilizers and agricultural amendments

2008

An 80-year soil archive, the 42-plot experimental design at the INRA in Versailles (France), is used here to study long-term contamination by 137Cs atmospheric deposition and the fate of this radioisotope when associated with various agricultural practices: fallow land, KCl, NH4(NO3), superphosphate fertilizers, horse manure and lime amendments. The pertinence of a simple box model, where radiocaesium is supposed to move downward by convectional mechanisms, is checked using samples from control plots which had been neither amended, nor cultivated since 1928. This simple model presents the advantage of depending on only two parameters: α, a proportional factor allowing the historical atmosph…

business.product_categoryTime FactorsHealth Toxicology and Mutagenesisradioactivitémarquage isotopiquepollution atmosphériqueCesiumSoil science010501 environmental sciences010403 inorganic & nuclear chemistrymodèle01 natural sciencesChernobylPloughSoilddc:550Environmental ChemistrySoil Pollutants RadioactiveRadiocaesiumFertilizersWaste Management and Disposalpratique culturale0105 earth and related environmental sciencesHydrologyamendementRadionuclide[ SDE.BE ] Environmental Sciences/Biodiversity and EcologySoil classificationAgricultureGeneral MedicineCrop rotationManureRADIOACTIVITY;CHERNOBYL;POLLUTION;RADIOCAESIUM;RELATION SOL-ATMOSPHEREPollution0104 chemical sciencesSoil conditionerDeposition (aerosol physics)RadioactivityModels ChemicalCesium RadioisotopesSoil waterEnvironmental science[SDE.BE]Environmental Sciences/Biodiversity and Ecologybusiness
researchProduct