0000000000848756

AUTHOR

Lennart Lindbom

Licofelone, a novel 5-LOX/COX-inhibitor, attenuates leukocyte rolling and adhesion on endothelium under flow

The main mechanism of action of non-steroidal anti-inflammatory drugs (NSAIDs) is the inhibition of cycloxygenases COX-1 and COX-2. During recent years, combined 5-LOX/COX-inhibition, interfering with the biosynthesis of both prostaglandins and leukotrienes (LTs), has emerged as a possibility to avoid side effects related to COX-inhibition. The aim of the present study was to investigate if there is a contribution of mechanisms other than the reduction of inflammatory prostaglandins and leukotrienes to the anti-inflammatory effect of the LOX/COX inhibitor licofelone. In a flow chamber assay, licofelone (10-30 microM) dose-dependently decreased both the rolling and adhesion of leukocytes on …

research product

A novel class of potent nonglycosidic and nonpeptidic pan-selectin inhibitors.

An early step of the inflammatory response, the rolling of leukocytes on activated endothelial cells, is mediated by selectin/carbohydrate interactions. The tetrasaccharide sialy Lewisx is a ligand for E-, P-, and L-selectin and therefore serves as a lead structure for the development of analogues. A combination of synthesis and structure-based design allowed rapid optimization. The current lead 2a was evaluated in our E-selectin cell flow chamber assay where it proved to inhibit rolling and adhesion with an IC50 of 28+/-7 microM. The assays used are predictive for the in vivo efficacy of test compounds as shown for 2a in a proteose peptone induced peritonitis model of acute inflammation in…

research product

Diaryl-dithiolanes and -isothiazoles: COX-1/COX-2 and 5-LOX-inhibitory, OH scavenging and anti-adhesive activities

Three series of non-steroidal anti-inflammatory drugs (NSAIDs) inhibiting the cyclooxygenase/5-lipoxygenase (COX/5-LOX) pathways as such as formation of hydroxyl radicals and adhesion were prepared: 4,5-diaryl isothiazoles, 4,5-diaryl 3H-1,2-dithiole-3-thiones and 4,5-diaryl 3H-1,2-dithiole-3-ones. The aim of the present study was to develop substances which can intervene into the inflammatory processes via different mechanisms of action as multiple target non-steroidal anti-inflammatory drugs (MTNSAIDs) with increased anti-inflammatory potential. The current lead 11a was evaluated in COX-1/2, 5-LOX and (*)OH scavenging in vitro assays and in a static adhesion assay where it proved to inhib…

research product