0000000000849075
AUTHOR
Andrea Tangherloni
Computer-Assisted Approaches for Uterine Fibroid Segmentation in MRgFUS Treatments: Quantitative Evaluation and Clinical Feasibility Analysis
Nowadays, uterine fibroids can be treated using Magnetic Resonance guided Focused Ultrasound Surgery (MRgFUS), which is a non-invasive therapy exploiting thermal ablation. In order to measure the Non-Perfused Volume (NPV) for treatment response assessment, the ablated fibroid areas (i.e., Region of Treatment, ROT) are manually contoured by a radiologist. The current operator-dependent methodology could affect the subsequent follow-up phases, due to the lack of result repeatability. In addition, this fully manual procedure is time-consuming, considerably increasing execution times. These critical issues can be addressed only by means of accurate and efficient automated Pattern Recognition ap…
USE-Net: Incorporating Squeeze-and-Excitation blocks into U-Net for prostate zonal segmentation of multi-institutional MRI datasets
Prostate cancer is the most common malignant tumors in men but prostate Magnetic Resonance Imaging (MRI) analysis remains challenging. Besides whole prostate gland segmentation, the capability to differentiate between the blurry boundary of the Central Gland (CG) and Peripheral Zone (PZ) can lead to differential diagnosis, since tumor's frequency and severity differ in these regions. To tackle the prostate zonal segmentation task, we propose a novel Convolutional Neural Network (CNN), called USE-Net, which incorporates Squeeze-and-Excitation (SE) blocks into U-Net. Especially, the SE blocks are added after every Encoder (Enc USE-Net) or Encoder-Decoder block (Enc-Dec USE-Net). This study ev…
CNN-Based Prostate Zonal Segmentation on T2-Weighted MR Images: A Cross-Dataset Study
Prostate cancer is the most common cancer among US men. However, prostate imaging is still challenging despite the advances in multi-parametric magnetic resonance imaging (MRI), which provides both morphologic and functional information pertaining to the pathological regions. Along with whole prostate gland segmentation, distinguishing between the central gland (CG) and peripheral zone (PZ) can guide toward differential diagnosis, since the frequency and severity of tumors differ in these regions; however, their boundary is often weak and fuzzy. This work presents a preliminary study on deep learning to automatically delineate the CG and PZ, aiming at evaluating the generalization ability o…
CNN-based Prostate Zonal Segmentation on T2-weighted MR Images: A Cross-dataset Study
Prostate cancer is the most common cancer among US men. However, prostate imaging is still challenging despite the advances in multi-parametric Magnetic Resonance Imaging (MRI), which provides both morphologic and functional information pertaining to the pathological regions. Along with whole prostate gland segmentation, distinguishing between the Central Gland (CG) and Peripheral Zone (PZ) can guide towards differential diagnosis, since the frequency and severity of tumors differ in these regions; however, their boundary is often weak and fuzzy. This work presents a preliminary study on Deep Learning to automatically delineate the CG and PZ, aiming at evaluating the generalization ability …
NeXt for neuro-radiosurgery: A fully automatic approach for necrosis extraction in brain tumor MRI using an unsupervised machine learning technique
Stereotactic neuro-radiosurgery is a well-established therapy for intracranial diseases, especially brain metastases and highly invasive cancers that are difficult to treat with conventional surgery or radiotherapy. Nowadays, magnetic resonance imaging (MRI) is the most used modality in radiation therapy for soft-tissue anatomical districts, allowing for an accurate gross tumor volume (GTV) segmentation. Investigating also necrotic material within the whole tumor has significant clinical value in treatment planning and cancer progression assessment. These pathological necrotic regions are generally characterized by hypoxia, which is implicated in several aspects of tumor development and gro…