0000000000849204

AUTHOR

Prapat Suriyaphol

Enzymatically modified nonoxidized low-density lipoprotein induces interleukin-8 in human endothelial cells: role of free fatty acids.

Background— Treatment of low-density lipoprotein (LDL) with a protease and cholesterolesterase transforms the lipoprotein to an entity that resembles lipoprotein particles in atherosclerotic lesions, which have a high content of free cholesterol, reflecting extensive de-esterification in the intima. Because de-esterification would occur beneath the endothelium, we examined the effects of enzymatically modified LDL (E-LDL) on cultured endothelial cells. Methods and Results— Incubation of endothelial cells with E-LDL provoked selective accumulation of interleukin (IL)-8 mRNA and production of the cytokine. Chemical analyses and depletion experiments indicated that the effect was caused by th…

research product

Possible protective role for C-reactive protein in atherogenesis: complement activation by modified lipoproteins halts before detrimental terminal sequence.

Background—Previous work indicated that enzymatically remodeled LDL (E-LDL) might activate complement in atherosclerotic lesions via a C-reactive protein (CRP)–dependent and CRP-independent pathway. We sought to substantiate this contention and determine whether both pathways drive the sequence to completion.Methods and Results—E-LDL was prepared by sequential treatment of LDL with a protease and cholesteryl esterase. Trypsin, proteinase K, cathepsin H, or plasmin was used with similar results. Functional tests were used to assess total complement hemolytic activity, and immunoassays were used to demonstrate C3 cleavage and to quantify C3a, C4a, C5a, and C5b-9. E-LDL preparations activated …

research product

Enzymatically hydrolyzed low-density lipoprotein modulates inflammatory responses in endothelial cells

SummaryThere is evidence that low-density lipoprotein (LDL) is modified by hydrolytic enzymes,and that the product (E-LDL) induces selective production of interleukin 8 (IL-8) in endothelial cells. Since nuclear factor-kappaB (NF-κB) is a major regulator of IL-8 transcription, we studied its activation in endothelial cells treated with E-LDL. Unexpectedly,the modified lipoprotein not only failed to activate NF-κB, but completely blocked its activation by tumour necrosis factor-alpha (TNF-α) in EA.hy926-cells, as assessed by electrophoretic mobility shift assays and immunofluorescence. Inhibition occurred upstream of NF-κB translocation, as inhibitor of NF-κB- (IκB)-phosphorylation was suppr…

research product

Enzymatic modification of low-density lipoprotein in the arterial wall: a new role for plasmin and matrix metalloproteinases in atherogenesis.

Objective— Functionally interactive proteases of the plasminogen/plasmin and the matrix metalloproteinase (MMP) system degrade and reorganize the extracellular matrix of the vessel wall in atherosclerosis. Here we investigated whether such proteases are able to confer atherogenic properties onto low density lipoprotein by nonoxidative modification. Methods and Results— Similar to the recently described enzymatically-modified low-density lipoprotein (E-LDL), native LDL exposed to plasmin or matrix MMP-2 or MMP-9 and cholesterylester-hydrolase (CEH) showed extensive deesterification, with ratios of free cholesterol to total cholesterol rising to 0.8 compared with 0.2 in native LDL. When the …

research product

Enzymatically modified LDL induces cathepsin H in human monocytes: potential relevance in early atherogenesis.

Objective—Modification with proteases and cholesterylesterase transforms LDL to a moiety that resembles lipoproteins isolated from atherosclerotic lesions and possesses atherogenic properties. To identify changes in monocyte-derived foam cells laden with enzymatically modified LDL (E-LDL), we compared patterns of the most abundant transcripts in these cells after incubation with LDL or E-LDL.Methods and Results—Serial analyses of gene expression (SAGE) libraries were constructed from human monocytes after treatment with LDL or E-LDL. Several tags were differentially expressed in LDL-treated versus E-LDL–treated cells, whereby marked selective induction by E-LDL of cathepsin H was conspicuou…

research product