0000000000850835
AUTHOR
Dirce Kiyomi Hayashida Mochida
Inflection points and topology of surfaces in 4-space
We consider asymptotic line fields on generic surfaces in 4-space and show that they are globally defined on locally convex surfaces, and their singularities are the inflection points of the surface. As a consequence of the generalized Poincare-Hopf formula, we obtain some relations between the number of inflection points in a generic surface and its Euler number. In particular, it follows that any 2-sphere, generically embedded as a locally convex surface in 4-space, has at least 4 inflection points.
The geometry of surfaces in 4-space from a contact viewpoint
We study the geometry of the surfaces embedded in ℝ4 through their generic contacts with hyperplanes. The inflection points on them are shown to be the umbilic points of their families of height functions. As a consequence we prove that any generic convexly embedded 2-sphere in ℝ4 has inflection points.