Tracking dynamics of magma migration in open-conduit systems
Open-conduit volcanic systems are typically characterized by unsealed volcanic conduits feeding permanent or quasi-permanent volcanic activity. This persistent activity limits our ability to read changes in the monitored parameters, making the assessment of possible eruptive crises more difficult. We show how an integrated approach to monitoring can solve this problem, opening a new way to data interpretation. The increasing rate of explosive transients, tremor amplitude, thermal emissions of ejected tephra, and rise of the very-long-period (VLP) seismic source towards the surface are interpreted as indicating an upward migration of the magma column in response to an increased magma input r…
Forecasting Effusive Dynamics and Decompression Rates by Magmastatic Model at Open-vent Volcanoes
AbstractEffusive eruptions at open-conduit volcanoes are interpreted as reactions to a disequilibrium induced by the increase in magma supply. By comparing four of the most recent effusive eruptions at Stromboli volcano (Italy), we show how the volumes of lava discharged during each eruption are linearly correlated to the topographic positions of the effusive vents. This correlation cannot be explained by an excess of pressure within a deep magma chamber and raises questions about the actual contributions of deep magma dynamics. We derive a general model based on the discharge of a shallow reservoir and the magmastatic crustal load above the vent, to explain the linear link. In addition, we…
Modern Multispectral Sensors Help Track Explosive Eruptions
Due to its massive air traffic impact, the 2010 eruption of Eyjafjallajokull was felt by millions of people and cost airlines more than U.S. $1.7 billion. The event has, thus, become widely cited in renewed efforts to improve real-time tracking of volcanic plumes, as witnessed by special sections published last year in Journal of Geophysical Research, (117, issues D20 and B9).