Implementing the three-particle quantization condition including higher partial waves
We present an implementation of the relativistic three-particle quantization condition including both $s$- and $d$-wave two-particle channels. For this, we develop a systematic expansion about threshold of the three-particle divergence-free K matrix, $\mathcal{K}_{\mathrm{df,3}}$, which is a generalization of the effective range expansion of the two-particle K matrix, $\mathcal{K}_2$. Relativistic invariance plays an important role in this expansion. We find that $d$-wave two-particle channels enter first at quadratic order. We explain how to implement the resulting multichannel quantization condition, and present several examples of its application. We derive the leading dependence of the …
Numerical exploration of three relativistic particles in a finite volume including two-particle resonances and bound states
In this work, we use an extension of the quantization condition, given in Ref. [1], to numerically explore the finite-volume spectrum of three relativistic particles, in the case that two-particle subsets are either resonant or bound. The original form of the relativistic three-particle quantization condition was derived under a technical assumption on the two-particle K matrix that required the absence of two-particle bound states or narrow two-particle resonances. Here we describe how this restriction can be lifted in a simple way using the freedom in the definition of the K-matrix-like quantity that enters the quantization condition. With this in hand, we extend previous numerical studie…