0000000000853883

AUTHOR

Eero Ruosteenoja

showing 8 related works from this author

Asymptotic Lipschitz regularity for tug-of-war games with varying probabilities

2018

We prove an asymptotic Lipschitz estimate for value functions of tug-of-war games with varying probabilities defined in $\Omega\subset \mathbb R^n$. The method of the proof is based on a game-theoretic idea to estimate the value of a related game defined in $\Omega\times \Omega$ via couplings.

osittaisdifferentiaaliyhtälötPure mathematicsComputer Science::Computer Science and Game TheoryTug of war010102 general mathematicslocal Lipschitz estimatesLipschitz continuity01 natural sciencesnormalized p(x)-laplaciandynamic programming principle010104 statistics & probabilityMathematics - Analysis of PDEsFOS: Mathematicspeliteoria91A05 91A15 91A50 35B65 35J60 35J92stochastic games0101 mathematicsValue (mathematics)AnalysisAnalysis of PDEs (math.AP)Mathematicsstokastiset prosessit
researchProduct

Remarks on regularity for p-Laplacian type equations in non-divergence form

2018

We study a singular or degenerate equation in non-divergence form modeled by the $p$-Laplacian, $$-|Du|^\gamma\left(\Delta u+(p-2)\Delta_\infty^N u\right)=f\ \ \ \ \text{in}\ \ \ \Omega.$$ We investigate local $C^{1,\alpha}$ regularity of viscosity solutions in the full range $\gamma>-1$ and $p>1$, and provide local $W^{2,2}$ estimates in the restricted cases where $p$ is close to 2 and $\gamma$ is close to 0.

viscosity solutionsintegrability of second derivativesType (model theory)01 natural sciencesDivergencelocal C1ViscosityMathematics - Analysis of PDEsFOS: Mathematicspartial differential equations0101 mathematicsMathematicsMathematical physicsosittaisdifferentiaaliyhtälötα regularityApplied Mathematics010102 general mathematicsta111p-Laplacianlocal C1α regularityviskositeettiDegenerate equation35J60 35B65 35J92010101 applied mathematicsviscosityp-LaplacianAnalysisAnalysis of PDEs (math.AP)Journal of Differential Equations
researchProduct

$C^{1,��}$ regularity for the normalized $p$-Poisson problem

2017

We consider the normalized $p$-Poisson problem $$-��^N_p u=f \qquad \text{in}\quad ��.$$ The normalized $p$-Laplacian $��_p^{N}u:=|D u|^{2-p}��_p u$ is in non-divergence form and arises for example from stochastic games. We prove $C^{1,��}_{loc}$ regularity with nearly optimal $��$ for viscosity solutions of this problem. In the case $f\in L^{\infty}\cap C$ and $p>1$ we use methods both from viscosity and weak theory, whereas in the case $f\in L^q\cap C$, $q>\max(n,\frac p2,2)$, and $p>2$ we rely on the tools of nonlinear potential theory.

Pure mathematicsnormalized p-laplacianregularitymathematicsp-poisson problemApplied MathematicsGeneral Mathematics010102 general mathematicsta111α01 natural sciences35J60 35B65 35J92Potential theory010101 applied mathematicslocal C1Nonlinear systemViscosityviscosityFOS: Mathematics0101 mathematicsPoisson problemMathematicsAnalysis of PDEs (math.AP)
researchProduct

Local regularity for time-dependent tug-of-war games with varying probabilities

2016

We study local regularity properties of value functions of time-dependent tug-of-war games. For games with constant probabilities we get local Lipschitz continuity. For more general games with probabilities depending on space and time we obtain H\"older and Harnack estimates. The games have a connection to the normalized $p(x,t)$-parabolic equation $(n+p(x,t))u_t=\Delta u+(p(x,t)-2) \Delta_{\infty}^N u$.

Computer Science::Computer Science and Game TheoryPure mathematicsparabolic p(xTug of warMathematics::Analysis of PDEsHölder condition01 natural sciencesMathematics - Analysis of PDEsFOS: Mathematicsstochastic gamestug-of-war0101 mathematicsConnection (algebraic framework)Harnack's inequalityMathematicsHarnack inequalitySpacetimeHölder continuityApplied Mathematicsta111010102 general mathematicsLipschitz continuity010101 applied mathematicst)-LaplacianConstant (mathematics)AnalysisAnalysis of PDEs (math.AP)Journal of Differential Equations
researchProduct

C1,α regularity for the normalized p-Poisson problem

2017

We consider the normalized p -Poisson problem − Δ N p u = f in Ω ⊂ R n . The normalized p -Laplacian Δ N p u := | Du | 2 − p Δ p u is in non-divergence form and arises for example from stochastic games. We prove C 1 ,α loc regularity with nearly optimal α for viscosity solutions of this problem. In the case f ∈ L ∞ ∩ C and p> 1 we use methods both from viscosity and weak theory, whereas in the case f ∈ L q ∩ C , q> max( n, p 2 , 2), and p> 2 we rely on the tools of nonlinear potential theory peerReviewed

local C1αnormalized p-laplacianregularitymatematiikkap-poisson problemviskositeetti
researchProduct

Vuoristosolalause

2013

Todistetaan vuoristosolalauseen Banach-avaruuden versio ja tutkitaan, miten tätä lausetta voi soveltaa erään p-Laplace reuna-arvo-ongelman heikon ratkaisun olemassaolokysymykseen.

matematiikkavariaatiolaskentafunktiot
researchProduct

Regularity properties of tug-of-war games and normalized equations

2017

osittaisdifferentiaaliyhtälötviscosity solutionspeliteoriastochastic gamesnormalized p-Laplacianstokastiset prosessit
researchProduct

Game-Theoretic Approach to Hölder Regularity for PDEs Involving Eigenvalues of the Hessian

2021

AbstractWe prove a local Hölder estimate for any exponent $0<\delta <\frac {1}{2}$ 0 < δ < 1 2 for solutions of the dynamic programming principle $$ \begin{array}{@{}rcl@{}} u^{\varepsilon} (x) = \sum\limits_{j=1}^{n} \alpha_{j} \underset{\dim(S)=j}{\inf} \underset{|v|=1}{\underset{v\in S}{\sup}} \frac{u^{\varepsilon} (x + \varepsilon v) + u^{\varepsilon} (x - \varepsilon v)}{2} \end{array} $$ u ε ( x ) = ∑ j = 1 n α j inf dim ( S ) = j sup v ∈ S | v | = 1 u ε ( x + ε v ) + u ε ( x − ε v ) 2 with α1,αn > 0 and α2,⋯ ,αn− 1 ≥ 0. The proof is based on a new coupling idea from game theory. As an application, we get the same regularity estimate for viscosity solutions of the PDE $…

viscosity solutionosittaisdifferentiaaliyhtälötMathematics::Functional AnalysisStatistics::Theory91A05 91A15 35D40 35B65Mathematics::Dynamical Systemsholder estimateMathematics::Analysis of PDEsmatemaattinen optimointifully nonlinear PDEsdynamic programming principleMathematics - Analysis of PDEsMathematics::ProbabilityFOS: Mathematicspeliteoriaeigenvalue of the HessianAnalysisAnalysis of PDEs (math.AP)estimointi
researchProduct