6533b7dcfe1ef96bd1273478

RESEARCH PRODUCT

Remarks on regularity for p-Laplacian type equations in non-divergence form

Eero RuosteenojaAmal Attouchi

subject

viscosity solutionsintegrability of second derivativesType (model theory)01 natural sciencesDivergencelocal C1ViscosityMathematics - Analysis of PDEsFOS: Mathematicspartial differential equations0101 mathematicsMathematicsMathematical physicsosittaisdifferentiaaliyhtälötα regularityApplied Mathematics010102 general mathematicsta111p-Laplacianlocal C1α regularityviskositeettiDegenerate equation35J60 35B65 35J92010101 applied mathematicsviscosityp-LaplacianAnalysisAnalysis of PDEs (math.AP)

description

We study a singular or degenerate equation in non-divergence form modeled by the $p$-Laplacian, $$-|Du|^\gamma\left(\Delta u+(p-2)\Delta_\infty^N u\right)=f\ \ \ \ \text{in}\ \ \ \Omega.$$ We investigate local $C^{1,\alpha}$ regularity of viscosity solutions in the full range $\gamma>-1$ and $p>1$, and provide local $W^{2,2}$ estimates in the restricted cases where $p$ is close to 2 and $\gamma$ is close to 0.

10.1016/j.jde.2018.04.017http://juuli.fi/Record/0330851618