0000000000854690
AUTHOR
Rune Schlanbusch
Data Driven Seal Wear Classifications using Acoustic Emissions and Artificial Neural Networks
The work presented in this paper is built on a series of experiments aiming to develop a data-driven and automated method for seal diagnostics using Acoustic Emission (AE) features. Seals in machineries operate in harsh conditions, and seal wear in hydraulic cylinders results in fluid leakage, and instability of the piston rod movement. Therefore, regular inspection of seals is required using automated approaches to improve productivity and to reduce unscheduled maintenance. In this study, we implemented a data-driven diagnostics approach which utilizes AE measurements along with light weight Artificial Neural Networks (ANN) as a classifier to investigate the performance and resources (hard…
Condition Monitoring Technologies for Synthetic Fiber Ropes - a Review
This paper presents a review of different condition monitoring technologies for fiber ropes. Specifically, it presents an overview of the articles and patents on the subject, ranging from the early 70’s up until today with the state of the art. Experimental results are also included and discussed in a conditionmonitoring context,where failuremechanisms and changes in physical parameters give improved insight into the degradation process of fiber ropes. From this review, it is found that automatic width measurement has received surprisingly little attention, and might be a future direction for the development of a continuous condition monitoring system for synthetic fiber ropes.
Automated and Rapid Seal Wear Classification Based on Acoustic Emission and Support Vector Machine
Seal wear in hydraulic cylinders results in fluid leakage, and instability of the piston rod movement. Therefore, regular inspection of seals is required using automated approaches to improve productivity and to reduce unscheduled maintenance. In literature, successful attempts have been made using acoustic emission-based condition monitoring to classify the seal wear. However, limited attempts have been made to implement automated approaches to classify seal wear using acoustic emission features. Therefore, this article presents an automated approach for rapid and computationally economical diagnosis of seal wear using acoustic emission. The experiments were performed at varying pressure c…
Adaptive Backstepping Attitude Control of a Rigid Body with State Quantization
Author's accepted manuscript © 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. In this paper, the attitude tracking control problem of a rigid body is investigated where the states are quantized. An adaptive backstepping based control scheme is developed and a new approach to stability analysis is developed by constructing a new compensation scheme for the effect…
Acoustic Emission-Based Condition Monitoring and Remaining Useful Life Prediction of Hydraulic Cylinder Rod Seals
The foremost reason for unscheduled maintenance of hydraulic cylinders in industry is caused by wear of the hydraulic seals. Therefore, condition monitoring and subsequent estimation of remaining useful life (RUL) methods are highly sought after by the maintenance professionals. This study aimed at investigating the use of acoustic emission (AE) sensors to identify the early stages of external leakage initiation in hydraulic cylinders through run to failure studies (RTF) in a test rig. In this study, the impact of sensor location and rod speeds on the AE signal were investigated using both time- and frequency-based features. Furthermore, a frequency domain analysis was conducted to investig…
Adaptive Attitude Control of a Rigid Body with Input and Output Quantization
Author's accepted manuscript. © 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. In this paper, the adaptive attitude tracking the problem of a rigid body is investigated where the input and output are transmitted via a network. To reduce the communication burden in a network, a quantizer is introduced in both uplink and downlink communication channels. An adaptiv…