0000000000855285
AUTHOR
Gerald Von Schumann
A Newly-Detected Reductase fromRauvolfiaCloses a Gap in the Biosynthesis of the Antiarrhythmic Alkaloid Ajmaline
A new enzyme, 1,2-dihydrovomilenine reductase (E.C. 1.3.1), has been detected in Rauvolfia cell suspension cultures. The enzyme specifically converts 2beta( R)-1,2-dihydrovomilenine through an NADPH-dependent reaction into 17-O-acetylnorajmaline, a close biosynthetic precursor of the antiarrhythmic alkaloid ajmaline from Rauvolfia. A five-step purification procedure using SOURCE 30Q chromatography, hydroxyapatite chromatography, 2',5'-ADP Sepharose 4B affinity chromatography and ion exchange chromatography on DEAE Sepharose and Mono Q delivered an approximately 200-fold enriched enzyme in a yield of approximately 6%. SDS-PAGE showed an M r for the enzyme of approximately 48 kDa. Optimum pH …
Vomilenine Reductase — a novel Enzyme catalyzing a crucial Step in the Biosynthesis of the Therapeutically applied Antiarrhythmic Alkaloid Ajmaline
Delineation of the biochemical pathway leading to the antiarrhythmic Rauvolfia alkaloid ajmaline has been an important target in biosynthetic research for many years. The biosynthetic sequence starting with tryptamine and the monoterpene secologanin consists of about 10 different steps. Most of the participating enzymes have been detected and characterized previously, except those catalyzing the reduction of the intermediate vomilenine. A novel NADPH-dependent enzyme that reduces the intermediate has been isolated from Rauvolfia serpentina cell suspension cultures. Vomilenine reductase (M(r )43 kDa, temp opt 30 degrees C, pH opt 5.7-6.2), saturates the indolenine double bond of vomilenine w…