0000000000855322
AUTHOR
Massimo Blasone
CP symmetry and thermal effects on Dirac bi-spinor spin–parity local correlations
Intrinsic quantum correlations supported by the $SU(2)\otimes SU(2)$ structure of the Dirac equation used to describe particle/antiparticle states, optical ion traps and bilayer graphene are investigated and connected to the description of local properties of Dirac bi-spinors. For quantum states driven by Dirac-like Hamiltonians, quantum entanglement and geometric discord between spin and parity degrees of freedom - sometimes mapped into equivalent low energy internal degrees of freedom - are obtained. Such \textit{spin-parity} quantum correlations and the corresponding nonlocal intrinsic structures of bi-spinor fermionic states can be classified in order to relate quantum observables to th…
Entanglement in a QFT Model of Neutrino Oscillations
Tools of quantum information theory can be exploited to provide a convenient description of the phenomena of particle mixing and flavor oscillations in terms of entanglement, a fundamental quantum resource. We extend such a picture to the domain of quantum field theory where, due to the nontrivial nature of flavor neutrino states, the presence of antiparticles provides additional contributions to flavor entanglement. We use a suitable entanglement measure, the concurrence, that allows extracting the two-mode (flavor) entanglement from the full multimode, multiparticle flavor neutrino states.
Entanglement in neutrino oscillations
Flavor oscillations in elementary particle physics are related to multi-mode entanglement of single-particle states. We show that mode entanglement can be expressed in terms of flavor transition probabilities, and therefore that single-particle entangled states acquire a precise operational characterization in the context of particle mixing. We treat in detail the physically relevant cases of two- and three-flavor neutrino oscillations, including the effective measure of CP violation. We discuss experimental schemes for the transfer of the quantum information encoded in single-neutrino states to spatially delocalized two-flavor charged lepton states, thus showing, at least in principle, tha…
Bilayer graphene lattice-layer entanglement in the presence of non-Markovian phase noise
The evolution of single particle excitations of bilayer graphene under effects of non-Markovian noise is described with focus on the decoherence process of lattice-layer (LL) maximally entangled states. Once that the noiseless dynamics of an arbitrary initial state is identified by the correspondence between the tight-binding Hamiltonian for the AB-stacked bilayer graphene and the Dirac equation -- which includes pseudovector- and tensor-like field interactions -- the noisy environment is described as random fluctuations on bias voltage and mass terms. The inclusion of noisy dynamics reproduces the Ornstein-Uhlenbeck processes: a non-Markovian noise model with a well-defined Markovian limit…
Quantum nonlocality in extended theories of gravity
We investigate how pure-state Einstein-Podolsky-Rosen correlations in the internal degrees of freedom of massive particles are affected by a curved spacetime background described by extended theories of gravity. We consider models for which the corrections to the Einstein-Hilbert action are quadratic in the curvature invariants and we focus on the weak-field limit. We quantify nonlocal quantum correlations by means of the violation of the Clauser-Horne-Shimony-Holt inequality, and show how a curved background suppresses the violation by a leading term due to general relativity and a further contribution due to the corrections to Einstein gravity. Our results can be generalized to massless p…
Graphene lattice-layer entanglement under non-Markovian phase noise
The evolution of single particle excitations of bilayer graphene under effects of non-Markovian noise is described with focus on the decoherence process of lattice-layer (LL) maximally entangled states. Once that the noiseless dynamics of an arbitrary initial state is identified by the correspondence between the tight-binding Hamiltonian for the AB-stacked bilayer graphene and the Dirac equation -- which includes pseudovector- and tensor-like field interactions -- the noisy environment is described as random fluctuations on bias voltage and mass terms. The inclusion of noisy dynamics reproduces the Ornstein-Uhlenbeck processes: a non-Markovian noise model with a well-defined Markovian limit…
Hierarchies of geometric entanglement
We introduce a class of generalized geometric measures of entanglement. For pure quantum states of $N$ elementary subsystems, they are defined as the distances from the sets of $K$-separable states ($K=2,...,N$). The entire set of generalized geometric measures provides a quantification and hierarchical ordering of the different bipartite and multipartite components of the global geometric entanglement, and allows to discriminate among the different contributions. The extended measures are applied to the study of entanglement in different classes of $N$-qubit pure states. These classes include $W$ and $GHZ$ states, and their symmetric superpositions; symmetric multi-magnon states; cluster s…
Non-abelian gauge structure in neutrino mixing
We discuss the existence of a non-abelian gauge structure associated with flavor mixing. In the specific case of two flavor mixing of Dirac neutrino fields, we show that this reformulation allows to define flavor neutrino states which preserve the Poincar\'e structure. Phenomenological consequences of our analysis are explored.
Flavor vacuum entanglement in boson mixing
Mixing transformations in quantum field theory are non-trivial, since they are intimately related to the unitary inequivalence between Fock spaces for fields with definite mass and fields with definite flavor. Considering the superposition of two neutral scalar (spin-0) bosonic fields, we investigate some features of the emerging condensate structure of the flavor vacuum. In particular, we quantify the flavor vacuum entanglement in terms of the von Neumann entanglement entropy of the reduced state. Furthermore, in a suitable limit, we show that the flavor vacuum has a structure akin to the thermal vacuum of Thermo Field Dynamics, with a temperature dependent on both the mixing angle and the…