0000000000855499

AUTHOR

C. Carrétéro

WS2 2D Semiconductor Down to Monolayers by Pulsed-Laser Deposition for Large-Scale Integration in Electronics and Spintronics Circuits

International audience; We report on the achievement of a large-scale tungsten disulfide (WS2) 2D semiconducting platform derived by pulsed-laser deposition (PLD) on both insulating substrates (SrTiO3), as required for in-plane semiconductor circuit definition, and ferromagnetic spin sources (Ni), as required for spintronics applications. We show thickness and phase control, with highly homogeneous wafer-scale monolayers observed under certain conditions, as demonstrated by X-ray photoelectron spectroscopy and Raman spectroscopy mappings. Interestingly, growth appears to be dependent on the substrate selection, with a dramatically increased growth rate on Ni substrates. We show that this 2D…

research product

A perpendicular graphene/ferromagnet electrode for spintronics

We report on the large-scale integration of graphene layers over a FePd perpendicular magnetic anisotropy (PMA) platform, targeting further downscaling of spin circuits. An L10 FePd ordered alloy showing both high magneto-crystalline anisotropy and a low magnetic damping constant, is deposited by magnetron sputtering. The graphene layer is then grown on top of it by large-scale chemical vapor deposition. A step-by-step study, including structural and magnetic analyses by x-ray diffraction and Kerr microscopy, shows that the measured FePd properties are preserved after the graphene deposition process. This scheme provides a graphene protected perpendicular spin electrode showing resistance t…

research product