6533b837fe1ef96bd12a27cc

RESEARCH PRODUCT

WS2 2D Semiconductor Down to Monolayers by Pulsed-Laser Deposition for Large-Scale Integration in Electronics and Spintronics Circuits

Victor ZatkoAnke SanderFlorian GodelOdile BezencenetBernard ServetC. CarrétéroPierre BrusMarie-blandine MartinMarta GalbiatiBruno DlubakPierre SeneorAymeric Vecchiola

subject

Materials scienceTungsten disulfideWS202 engineering and technology010402 general chemistry01 natural sciencesPulsed laser depositionchemistry.chemical_compoundMonolayerDeposition (phase transition)General Materials ScienceElectronics2D semiconductorsElectronic circuitspintronicsSpintronicsbusiness.industryNanotecnologia021001 nanoscience & nanotechnologypulsed-laser deposition[SPI.TRON]Engineering Sciences [physics]/Electronics0104 chemical sciencesEspectroscòpia RamanSemiconductorchemistrySemiconductorsRaman spectroscopy[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]OptoelectronicsX-ray photoemission spectroscopy0210 nano-technologybusiness

description

International audience; We report on the achievement of a large-scale tungsten disulfide (WS2) 2D semiconducting platform derived by pulsed-laser deposition (PLD) on both insulating substrates (SrTiO3), as required for in-plane semiconductor circuit definition, and ferromagnetic spin sources (Ni), as required for spintronics applications. We show thickness and phase control, with highly homogeneous wafer-scale monolayers observed under certain conditions, as demonstrated by X-ray photoelectron spectroscopy and Raman spectroscopy mappings. Interestingly, growth appears to be dependent on the substrate selection, with a dramatically increased growth rate on Ni substrates. We show that this 2D-semiconductor integration protocol preserves the interface integrity. Illustratively, the WS2/Ni electrode is shown to be resistant to oxidation (even after extended exposure to ambient conditions) and to present tunneling characteristics once integrated into a complete vertical device. Overall, these experiments show that the presented PLD approach used here for WS2 growth is versatile and has a strong potential to accelerate the integration and evaluation of large-scale 2D-semiconductor platforms in electronics and spintronics circuits.

10.1021/acsanm.0c01408https://hdl.handle.net/10550/78966