0000000000855606

AUTHOR

Pouya Aghaei Pour

Desirable properties of performance indicators for assessing interactive evolutionary multiobjective optimization methods

Interactive methods support decision makers in finding the most preferred solution in multiobjective optimization problems. They iteratively incorporate the decision maker's preference information to find the best balance among conflicting objectives. Several interactive methods have been developed in the literature. However, choosing the most suitable interactive method for a given problem can prove challenging and appropriate indicators are needed to compare interactive methods. Some indicators exist for a priori methods, where preferences are provided at the beginning of the solution process. We present some numerical experiments that illustrate why these indicators are not suitable for …

research product

Surrogate assisted interactive multiobjective optimization in energy system design of buildings

In this paper, we develop a novel evolutionary interactive method called interactive K-RVEA, which is suitable for computationally expensive problems. We use surrogate models to replace the original expensive objective functions to reduce the computation time. Typically, in interactive methods, a decision maker provides some preferences iteratively and the optimization algorithm narrows the search according to those preferences. However, working with surrogate model swill introduce some inaccuracy to the preferences, and therefore, it would be desirable that the decision maker can work with the solutions that are evaluated with the original objective functions. Therefore, we propose a novel…

research product