0000000000856056
AUTHOR
L. M. Ezquerro
On prefrattini residuals
All groups considered in the sequel are finite. Let (ℭ and denote the formations of groups which consist of collections of groups that respectively either split over each normal subgroup (nC-groups) or for which the groups do not possess nontrivial Frattini chief factors [8]. The purpose of this article is to develop and expand a concept that arises naturally with the residuals for these formations, namely each G-chief factor is non-complemented (Frattini). With respect to a solid set X of maximal subgroups, these properties are generalized respectively to so-called X-parafrattini (X-profrattini) normal subgroups for which each type is closed relative to products. The relationships among th…
The Jordan-Hölder theorem and prefrattini subgroups of finite groups
by A. BALLESTER-BOLINCHES and L. M. EZQUERRO(Received 26 January, 1994)Introduction. All groups considered are finite. In recent years a number ofgeneralizations of the classic Jordan-Holder Theorem have been obtained (see [7],Theorem A.9.13): in a finite group G a one-to-one correspondence as in the Jordan-Holder Theorem can be defined preserving not only G-isomorphic chief factors but eventheir property of being Frattini or non-Frattini chief factors. In [2] and [13] a newdirection of generalization is presented: the above correspondence can be defined in sucha way that the corresponding non-Frattini chief factors have the same complement(supplement).In this paper we present a necessary a…